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ABSTRACT 

In our previous work, Theory of Everything, we addressed the longstanding twin paradox of special relativity by introducing the 

concept of Aether force dynamics, F(v). This was achieved through the recognition that Aether force is cumulative, 

encompassing the sum of all force increments required to accelerate a massive body to velocity v. Similarly, the time dilation 

experienced by twin 2, the moving twin, is a cumulative effect, involving all time dilation increments accrued during their 

journey. This contrasts with the Lorentz contraction and mass dependence, which are instantaneous effects. Our approach 

successfully unified special and general relativity, extending the latter's focus on gravitational accelerations to incorporate any 

form of acceleration, thus leading to what we term the Ultimate Theory of Relativity. We have also applied this framework to 

describe dynamic processes in solar flares, drawing an analogy to the cinema problem, which involves maximizing the angle 

subtended by an observer to a screen. As in the twin paradox, the analysis necessitates the consideration of potential infinities, 

achieved by dividing finite quantities by zero or zero by zero. Remarkably, this led to a simultaneous application of Ultimate 

Relativity to both the cinema problem and solar flare dynamics, revealing that acceleration approaching infinity, a=1, is central 

to understanding these phenomena. 

Keywords: Dark Energy, Quantum Mechanics, Consciousness, Atomic Forces, Energy Transformations, Fundamental 

Principles, Reality  
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INTRODUCTION 

The concept of infinity has long posed challenges for 

physicists and mathematicians, who often seek to avoid it, 

especially when it involves division by zero. A commonly 

cited example is the claim that Einstein made a schoolboy 

mistake by dividing by zero in his calculations. It is, 

however, straightforward to note that if 1/∞ = 0, then 

similarly 1/0 = ∞. Despite this, discussions around infinity 

tend to provoke strong reactions, with many asserting that 

infinity is not a number. In truth, infinity is best understood 

as a number without bounds. During my time at Imperial 

College (1999–2001), it became increasingly apparent to me 

that a photon could be described as an electron (or positron) 

that had been accelerated to the speed of light, losing its rest 

mass in the process. This results in a total mass expression 

of 
𝑚0

√1 −
𝑣2

𝑐2

=
0

0
= 𝑚𝑒 
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where 𝑚𝑒 is the electron rest mass. While I initially struggled 

to prove this premise, years of analysis have led me to a more 

profound understanding of its implications. Discussions with 

fellow physicists about this idea have often met resistance. 

For example, an undergraduate colleague, now a prominent 

physicist at the University of Sydney, dismissed the concept 

as physically meaningless. Nevertheless, recent 

developments in our exploration of the cinema problem have 

provided unexpected insights into solar flare dynamics, a 

topic central to both my honors thesis (1998) and attempted 

PhD (2005). The mathematical pathway is intricate, 

frequently involving ratios such as 𝑦/𝑥 = 0/0 = 0 and the 

concept of infinite acceleration, 𝑎 = 1. Our findings have led 

to the formulation of a new mathematical theorem, 

complementing L'Hôpital's rule, which addresses cases 

where functions yield the indeterminate form 0/0. This 

theorem offers insights into the renormalization techniques 

used by quantum field theorists to eliminate unwanted 

infinities. Moreover, it has become clear that the cross-

section of a solar flare's electromagnetic flux tube can be 

understood as the screen in the cinema problem, whose 

subtended angle must be maximized. This realization 

transforms the cinema problem from a mathematical 

curiosity into a fundamental aspect of physics, directly 

connected to our Ultimate Theory of Relativity. Through our 

investigation of the twin paradox, we have successfully 

unified special and general relativity. This unification has not 

only provided a new perspective on the twin paradox but also 

offers a comprehensive explanation of solar flare dynamics 

through the framework of Muhammad Aslam Musakhail's 

Aether dynamics. Ultimately, our findings suggest that the 

occurrence of solar flares is governed by the second law of 

thermodynamics, with electromagnetic processes driving the 

maximization of entropy. 

 

LITERATURE REVIEW 

The foundation of this paper, as with much of our previous 

work, is drawn from my self-published works available on 

Amazon: 

1. Grand Unification of the Four Fundamental Forces of 

Physics [1] 

2. Quantum Theory of Electrodynamics [2] 

3. A Saucerful of Science [3] 

4. (Soon to be published) Autobiography of James Russell 

Fields: A Rock Musician Who Knew Something about 

Electromagnetic Fields and Waves 

The current study builds primarily on the analysis of the 

cinema problem introduced in A Saucerful of Science. 

Significant effort has been invested in refining this work for 

journal publication. Key ideas from my earlier publications 

are also incorporated, including the Reverse Higgs boson 

process discussed in Grand Unification of the Four 

Fundamental Forces of Physics. This process describes how 

a massive fermion, such as an electron or positron, 

accelerates onto an electromagnetic wave packet, loses its 

rest mass, and ultimately becomes a photon traveling at the 

speed of light, ccc. To interpret this process meaningfully, it 

requires a negation of the Lorentz force, ensuring that 

photons are not deflected by external electric or magnetic 

fields-a concept outlined in both Grand Unification and 

Quantum Theory of Electrodynamics. 

A crucial theoretical influence for this paper comes from 

Quantum Theory of Electrodynamics (QTE), which marked 

the genesis of my research in 1988. The inspiration for this 

line of inquiry was sparked by a Scientific American article 

about photons trapped in glass prisms. My initial, more 

rudimentary formulation of this theory was published in the 

Toth-Maatian Review (Lubbock, Texas, Editor Harold Willis 

Milnes, PhD) across three installments between 1990 and 

1993. These early publications laid the groundwork for my 

continuing exploration of photon dynamics and the behavior 

of electromagnetic fields. 

A particularly important contribution from these works is the 

resolution of the indeterminate form ∞−∞, which can be 

reinterpreted as 0×∞ = 0/0 = ∞/∞. This mathematical insight 

has been instrumental in circumventing the issue of 

infinities, shedding light on the methods used by quantum 

field theorists in their renormalization techniques. Rather 

than viewing infinities as problematic, we posit that they 

represent an inherent and elegant feature of physical theory. 

In this context, infinities are not obstacles but instead 

contribute to the deeper understanding of quantum field 

theory, adding to its intellectual beauty rather than detracting 

from its significance as a robust physical framework. 

 

METHODOLOGY 

From early on, my academic focus was on becoming an 

electromagnetic theorist, which led me to choose Solar 

Flares as the subject of my honors project in 1998. After 

presenting my research to the Department of Theoretical 

Physics at the University of Sydney, I encountered 

skepticism from a lecturer who remarked, not an 

electromagnetic theorist. Undeterred by this dismissal, I 

pursued further studies at Imperial College London, where I 

completed an MSc in Quantum Fields and Fundamental 

Forces. During this time, I spent six months at the Institute 

Henri Poincaré in Paris, studying Supergravity, Superstrings, 

and M-theory, and writing my dissertation titled Duality and 

M-theory. In this dissertation, I addressed the transition from 

10 to 11 space-time dimensions as one moves from 

superstring theory to M-theory, which represents 11-

dimensional supergravity. My research concluded that this 

dimensional transition is fundamentally linked to Dirac’s 

electromagnetic theory, which postulates the existence of a 

magnetic monopole. 

The theme of electromagnetic theory has been a central 

aspect of my work since my honors project, and I have 

continued to explore magnetic monopoles throughout my 

career. M-theory, in particular, opened up the exciting 

possibility of developing a theory of quantum gravity. My 

ongoing research, which aligns with the broader framework 

of M-theory (as discussed in the Literature Review), 

reflects my dedication to understanding quantum gravity 

from an electromagnetic perspective. This paper forms part 

of my larger project on solar flares, which I am currently 

developing into a PhD thesis. 

The research presented here represents the culmination of 

years of work and is intricately linked to my investigations 

into electromagnetic phenomena, solar flare activity, and the 

theoretical underpinnings of quantum gravity. My 

contributions to electromagnetic theory have surpassed my 

initial aspirations, extending far beyond my original 
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expectations. In fact, my current research positions me to 

finalize and submit a PhD thesis on solar flares, a topic I have 

been dedicated to since 1998. This paper is an integral part 

of that body of work. Given the trajectory of my research and 

the significant contributions I have made, I look forward to 

the opportunity to submit my PhD thesis, a journey that was 

interrupted nearly two decades ago. After my forced removal 

from the degree program at the University of Sydney, and the 

stalling of my academic career despite my distinction in 

Senior Physics in 1986, I hope that the University of Sydney, 

or perhaps another institution, will provide me with the 

chance to finally complete this journey. 

 

THE CINEMA PROBLEM, WITH ELEVATION 

We start with the basic cinema problem, with the screen of 

dimension h elevated a distance y above the floor level and 

the sitting position a distance x horizontally from the screen 

position, as pictured below. 

 

 
Figure 1: The standard cinema problem, y = constant 

 

According to the figure above, we seek to maximize the 

viewing angle of the screen, , by varying the horizontal 

displacement, x, for a constant y. Upon inspection of the 

figure, we have the following identities: 

 

𝑡𝑎𝑛 𝜙 =  
ℎ+𝑦

𝑥
 ,   𝑡𝑎𝑛 𝜔 =  

𝑦

𝑥
  then   =  - ω 

 

= 𝑡𝑎𝑛−1(
ℎ+𝑦

𝑥
) – 𝑡𝑎𝑛−1(

𝑦

𝑥
)    (1)                    

 

Then to maximize the angle , we put /x = 0. We shall 

not attempt to solve this differential equation at this point, 

other than to point out that in the extremities, x → 0 then  

→ 0, and for x → ,  → 0, so that clearly to maximize the 

viewing angle, , the required displacement x is somewhere 

in between 0 and .  

Supposing now we consider y to be variable. That is, it is 

possible to elevate the observer at the seating position, x. We 

do this by varying y. As y → 0, the viewer approaches an 

elevation that coincides vertically with the bottom of the 

screen. We shall only consider displacements y → 0, not y 

negative.  

If y < 0, we need to analyze a different figure. However, this 

will not be necessary as we find that as x → 0, y → 0, i.e. as 

x is reduced, y → 0 and there is no possibility of y becoming 

negative. Further, consider the position (x,y) = (0,0) in the 

infinitesimal limit.  

As x increases, so does y such that the viewing angle is 

minimized with displacement x. In the reverse direction, 

then, we seek to maximize the increase in angle  with 

displacement.  

We seek a trajectory, y = f(x), such that as we move towards 

the screen, the rate at which the viewing angle  increases is 

maximized. The gradient of this trajectory gives the angle 

with respect to the floor and the vertical, 

 

𝑡𝑎𝑛−1 𝑑𝑦

𝑑𝑥
=  𝛼,       (2)                     

 

this is the angle the observer must move with respect to the 

axes defined by the screen and the floor to maximize the rate 

at which the viewing angle, , increases with distance r along 

the trajectory. The solution y = f(x) that maximizes /r 

along this trajectory must pass through these points defined 

as the x values that give maximal viewing angles  for given 

displacements y.  

This will turn out to be the case as we must incorporate the 

above differential equation, /x = 0, into an analysis 

whereby y is no longer a constant, but variable.  

In the next stage of the analysis, consider the path r defined 

as having direction r = dy/dx at every point along the curve 

y = f(x). In the infinitesimal limit, the path r is tangential to 

y = f(x) at every point, (x,y).  

To proceed further, we take an analogy out of 

electromagnetic theory in physics. Consider the electric field 

intensity, E, given by the gradient of the scalar potential, 

  

𝐸 =  −
𝜕𝜙

𝜕𝑟
        (3)    

 

in the direction such that |E| is maximized with displacement, 

r. To find the vector r, in two dimensions as in our cinema 

problem, one needs only to find its components, Ex, Ey, these 

two vectors given by the directions of the x- and y- axes 

respectively, and magnitudes respectively by ϕ/x and 

ϕ/y. The vector 

Er, the total electric field, is given by the sum of the x- and 

y-components. In our cinema analysis, we assume the 

viewing angle, , is an analog of a potential field in physics. 

In particular, the change in a potential field between two 

locations in the field does not depend on the path taken 

between these two points.  

This requirement is clearly satisfied by our cinema potential, 

. Clearly the change in potential  as we move between two 

points in the field does not depend on the path taken. 

However, in the analysis that follows, we’ll be concerned not 

with a maximization of the scalar potential , but with a 

maximization of the magnitude of the vector, /r. This 

quantity is not a potential field, nor is its modulus, as its 

change in magnitude and its direction depends on the path 

taken.  

Similarly, in Theory of Everything, F(v) does not depend 

specifically on the combination of all the various 

forces/accelerations that got the massive body to velocity, v. 

Numerous accelerations are possible. We have, possibly, an 

amalgamation of forces involved in arriving at the Aether 

force F(v). Or, just one Newtonian force, one acceleration 

involved, but various possibilities for this singular 

acceleration.  

Ultimately, we shall connect this to various acceleration 

possibilities in the twin paradox, ranging from a = 0, (the 

twins never re-unite), to a = , (instantaneous reversal, the 

time-dilation pay-back occurs at a uniform rate with distance 
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on the reverse journey. The acceleration chosen becomes the 

path chosen, in the cinema problem). 

 

 

 
Figure 2: Analysis of a scalar potential field, , or  

 

 

Without any further ado, we analyze the potential field, , 

according to the theorem of Pythagoras: 

 

𝝏𝜽

𝝏𝒓
= √(

𝝏𝜽

𝝏𝒙
)𝟐 + (

𝝏𝜽

𝝏𝒚
)𝟐       (4)           

 

We now seek to extremize this quantity, in the same way as 

we extremized the scalar potential, . To do this we proceed 

as before, taking a spatial derivative and setting this to zero. 

However, in the previous instance there was only one 

variable, x, whereas in the new analysis there are two 

variables, x and y, so we must take two spatial derivatives, 

and set them independently to zero. The analysis proceeds as 

follows: 

 
𝜕

𝜕𝑥
(

𝜕𝜃

𝜕𝑟
) = 0        (5)             

 
𝜕

𝜕𝑦
 (

𝜕𝜃

𝜕𝑟
) =  0        (6)                 

 

Solving for both of these, we shall find the ultimate angle of 

projection to maximize the rate at which the viewing 

potential  increases with distance r will be given by: 

 

𝑡𝑎𝑛−1 (
𝑑𝑦

𝑑𝑥
) =  𝛼 

 

Extremizing the (non-potential) field, /r, whose 

magnitude is given by the vector r = f ‘(x) for y = f(x). We 

must solve, or attempt to solve, the two partial differential 

equations above. In the final analysis it will do to just analyze 

the solutions as x, y → 0. It will be evident that the solutions 

do not acquire any negativities in y, such that the analysis put 

forward in Figure 1 is the correct analysis. Now let’s take the 

partial derivative /x and set it equal to zero, as above. We 

find: 

 

𝜕

𝜕𝑥
 (

𝜕𝜃

𝜕𝑟
) =  

(
𝜕2𝜃

𝜕𝑥2)

√(
𝜕𝜃

𝜕𝑥
)2+ (

𝜕𝜃

𝜕𝑦
)2

= 0    (7) 

 

Given then that one or other of /x, /y in the 

denominator will not vanish as x, y → 0, then a reasonable 

deduction to make will be that for all x, y, even x, y → 0, the 

nominator above will vanish: 

 
𝜕2𝜃

𝜕𝑥2 = 0         (8) 

 

By exactly the same process, we find: 

 
𝜕2𝜃

𝜕𝑦2 = 0         (9) 

 

So, we are taking double partial derivatives of  = ϕ - ω, 

above, where the two angles in question are given by arc 

tangents. To proceed with the differentiation, we need the 

following identity: 

 
𝜕

𝜕𝑥
 (𝑡𝑎𝑛−1x) = 

1

1+ 𝑥2      (10)  

 

We proceed firstly with the y-partial derivative, as it appears 

to be simpler. 

 
𝜕

𝜕𝑦
 [𝑡𝑎𝑛−1(

ℎ+𝑦

𝑥
) −  𝑡𝑎𝑛−1(

𝑦

𝑥
)] 

 

= 
𝟏

𝒙
 × (

𝟏

𝟏+(
𝒉+𝒚 

𝒙
)𝟐

− 
𝟏

𝒙
 × 

𝟏

𝟏+(
𝒚

𝒙
)𝟐

 ) 

 

= 
1

𝑥
 × [1 + (

 ℎ+𝑦

𝑥
)2]−1 - 

1

𝑥
 ×  [1 + (

𝑦

𝑥
)2]−1  (11) 

 

Next we do a second y-partial differentiation: 

 

𝜕2

𝜕𝑦2
(𝜙 − 𝜔) = 2 (

𝑦

𝑥
 ) [

(
1
𝑥
)2

[1 + (
𝑦
𝑥
)
2
]2

]

− 2 (
ℎ + 𝑦

𝑥
)

[
 
 
 
 

(
1
𝑥
)2

[1 + (
ℎ + 𝑦

𝑥
)
2

]

2

]
 
 
 
 

= 0 

(12) 

and so: 

 

𝑦 ×  [1 + (
ℎ+𝑦

𝑥
)2]2  =  (ℎ +  𝑦)  × [1 + (

𝑦

𝑥
)2]2    

(13) 

Finally, we proceed with the x-partial differentiation. 

 
𝜕

𝜕𝑥
 (𝜙 −  𝜔) =  

−(ℎ+𝑦)𝑥−2

1+ (
ℎ+𝑦

𝑥
)2

+
𝑦𝑥−2

1+(
𝑦

𝑥
)2

    (14) 

 

Then we take the second partial derivative. 

𝜕2

𝜕𝑥2
(𝜙 − 𝜔) =

𝜕

𝜕𝑥
[𝑦𝑥−2(1 + (

𝑦

𝑥
)

2

)−1 − 

(ℎ + 𝑦)𝑥−2(1 + (
ℎ + 𝑦

𝑥
)2)−1] 

(15) 

This is quite a complex differentiation, so we’ll do it in 

separate steps. Firstly: 

 
𝜕

𝜕𝑥
[1 + (𝑦𝑥−1)2]−1 = −[1 + (𝑦𝑥−1)2]−2(−2𝑦𝑥−2)𝑦𝑥−1 

 

 (16) 
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Secondly: 
𝜕

𝜕𝑥
[1 + ((ℎ + 𝑦)𝑥−1)2]−1 = 

2[1 + ((ℎ + 𝑦)𝑥−1)2]2(ℎ + 𝑦)𝑥−2 [2(ℎ + 𝑦)𝑥−1] 

(17) 

 

Finally, putting it all together and taking limits as x, y → 0. 

We have two differential equations: 

 
𝜕2

𝜕𝑥2
(𝜙 −  𝜔) =  

𝜕2

𝜕𝑦2
(𝜙 −  𝜔) =  0 .   (18) 

 

Or do we? Consider the equation we have arrived at, above, 

specifying 2/x2 (ϕ - ω). To confirm this is zero, it would 

certainly be helpful if the first term, the term multiplied by 

y, was zero. One is tempted to say, well one of its factors is 

y, and y → 0, therefore the term itself is zero. But this will 

not necessarily be the case if the other term is an infinity of 

order 1, because it is possible that 0 ×  ≠ 0, there are two 

other possible outcomes, K (= any nonzero, non-infinite 

number), and . And it will certainly not be the case if the 

other term is an infinity of higher order than 1, i.e. n, n > 1.  

So let’s investigate this term, the factor of y in the first term 

of the equation for 2/x2 (ϕ - ω), above, in the limit x, y → 

0. We have: 

 

3 × (1 + 02)-1 × 2 × 0 × 2 × (1 + 02)-2 

 

= 0 × 7 ~ 6      (19) 

 

We have, in this calculation, taken the position that y/x = 0/0 

= 0 is a zero of order 1. (See Back to the cinema problem, 

below). For two reasons: 

 

(i) y/x = 0/0 occurs all over the place in these equations, and 

it is very unlikely that we’ll get anywhere unless we choose 

it as zero, rather than the other two possibilities, K and . 

(ii) It is in agreement with Figure 4 below, or at least you 

could rule out, from Figure 4, the possibility that x/y = 0, that 

is, the y/x =  possibility. 

 

Now where we are headed in this discussion is an assertion 

that, nevertheless, we’ll be taking y → 0 as a zero of order 

unbounded, that is, whatever it needs to be. So that y × 6 = 

0 × 6 = 0, specifically. Because then we can make our 

analysis of the 2/x2(-ω) equation a lot easier. The position 

will be that if, in a calculation, you arrive at an infinite result, 

and this is undesirable, then you are permitted two possible 

options: 1- Eliminate the  by specifying a zero of arbitrary 

order n, 2-Take the anti-derivative, and see whether doing so 

eliminates the . If not, take the anti-derivative again, and 

again see. Continue to integrate, take the anti-derivative, 

until the  disappears. The expectation will be that the  

disappears after you have integrated n times. 
We shall discuss this process, this new mathematical 

theorem, further below. However firstly, let’s just see where 

all this is leading us. So we take the anti-derivative of 2/x2 

( - ω), that is not remotely a problem because we got it by 

differentiating. So if we apply, x → 0 and y → 0, does our 

infinity vanish? We have, from the /x ( - ω) equation 

above, the outcome: 

 

𝜕

𝜕𝑥
(𝜙 −  𝜔)  →  

𝑦

𝑥2
−

ℎ

𝑥2
(1 + 

ℎ2

𝑥2
)−1 

 

= 
𝑦

𝑥
 ×  

1

𝑥
− 

1

ℎ
= 0 ×  ∞ − 

𝟏

𝒉
= 0   (20) 

 

Now we have not yet considered the h + y term in 2/x2 (-

ω), the term that does not have the potential to immediately 

vanish upon consideration of y → 0. Because, as y → 0, (h + 

y) → h, not zero. We shall do that below, see equation (32). 

But for now, we are focused on the question as to how /x 

( - ω) vanished in the limit x → 0, y → 0, y/x → 0. Because 

we expected a number of anti-derivatives from 2/x2 ( - ω) 

would be necessary. The key lies in the fact that the 

expression for /x ( - ω) contains a special type of zero, y 

= 0. The term in question is (h + y). It doesn’t matter what 

sort of a zero y is, the outcome will be h + 0 = h. It doesn’t 

matter how many infinities y = 0 can negate, the result is the 

same. It just acts like a first order zero, regardless of what 

order it is. And because of this, we take the anti-derivative of 

2/x2 ( - ω) and we come up against this special kind of 

zero, then we are permitted to remove it, then repeat the 

differentiation, this time with y absent, h + y = h, and we 

expect to have removed the infinity. Let’s see. So let’s repeat 

the differentiation of /x ( - ω), this time with h + y = h. 

For clarity, we repeat the equation: 

 

𝜕2

𝜕𝑥2
(𝜙 −  𝜔)   =  

𝜕

𝜕𝑥
[𝑦𝑥−2(1 + (

𝑦

𝑥
)

2

)−1 − (ℎ + 𝑦)𝑥−2(1

+ (
ℎ + 𝑦

𝑥
)2)−1] 

So, we differentiate term (1), no (h + y) term: 

 
𝜕

𝜕𝑥
 (𝑦𝑥−2  ×  [1 + 𝑦2𝑥−2]−1) =  

𝑦

𝑥2  ×  𝑦2  ×  −2𝑥−3  ×

 −1 × [1 + (
𝑦

𝑥
)2]−2 + [1 + 

𝑦2

𝑥2]
−1  ×  𝑦 ×  

−2

𝑥3 =
𝒚𝟑

𝒙𝟓 − 
𝒚

𝒙𝟑 . 

 

 

= 03 × 2 – 0 × 2 = 0 -  = -      (21) 

 

Now consider term (2), and putting y = 0 → h + y = h. 

 
𝜕

𝜕𝑥
 (ℎ𝑥−2  ×  [1 + ℎ2𝑥−2]−1) = ℎ𝑥−2 × −[1 + 

ℎ2

𝑥2]
−2 

× ℎ2 × 
−2

𝑥3 + h × 
−2

𝑥3  ×  [1 + ℎ2𝑥−2]−2 

 

so that term (3) is as 

 

   −𝑥4  ×  −𝑥−3  ×  𝑥−2 = +
1

𝑥
= +∞    (22) 

 

and the term (4) is, 

   −
1

𝑥3  ×  𝑥2 = −
1

𝑥
= −∞     (23) 

 

Adding term (3) and term (4): Term (2) becomes 
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  -  = .      (24) 

 

(This is a mathematical identity, it can be shown, relatively 

easily, that:  -  = 0 × ∞ = 0, K or , and we take the latter 

option). Finally yielding: Term (1) + term (2) =  -  = 0 × 

 = 0, K or , and this time we take the first option, zero.    

It’s a good thing we had  -  - , right? If we had - - - 

, we’d be stuffed! Okay? Because there is no way to make 

that equal to  -  = 0 × !  

 

THE MEANING OF  - , FINITE OR INFINITE? 

Call ∞ - ∞ = alpha,  = finite or infinite. We investigate two 

alphas, ∞ - ∞ and ∞ + ∞.  

 

(I)    ∞ - ∞ = , 

 

so multiply both sides of this equation by zero 0 × ∞ - 0 × ∞ 

=  = ∞ or not ∞: 

 

(i) α ≠ ∞ then K1 – K2 = 0, (Ks both > 0 as the interval in 

question is between zero and ∞ not minus ∞).  K1 = K2.  

(ii) α = ∞ then K1 – K2 = K3 → K1 > K2.  

 

(II)  ∞ + ∞ = α. 

 

(i) α = ∞, multiply both sides of (II) by zero O × ∞ + O × ∞ 

= O × α. then K1 + K2 = K3, and 

(ii) α ≠ ∞,  O × ∞ + O × ∞ = 0. then K1 + K2 = O, forcing: 

 

No allowable solutions, K1 and K2 both positive, both zero. 

In total summary, it has become evident that ∞ + ∞ = ∞, 

whereas ∞ - ∞ can equal ∞ itself, or any non-infinite number, 

i.e. any constant and can equal zero itself which as we shall 

see is not a finite number.  

∞ - ∞ = ∞, add ∞ → ∞ = ∞ + ∞, 

(obviously, we simultaneously expect this to be the case). As 

an anti-corollary to Sam’s Squeeze theorem, we conclude 

that it is not possible that O×∞ could be equal simultaneously 

to zero and infinity. So, the safest thing would be to assume, 

in the absence of any further conjecture, that it is equal to 

neither of them, i.e. 0 × ∞ is equal to any (finite, nonzero) 

constant. ∞ - ∞ = K, K is either zero or infinity or anything 

in between, i.e. a finite number. (Obviously ∞ is not a finite 

number. However, neither is zero, → zero is simply a place 

holder in a particular digital quantity). 

For example, consider that 68 and 68.0 mean different things 

but it is easy to confuse the two and make a critical error. 

You can get as close as you like to zero but never get there 

just as you can get close to ∞ but never get all the way there. 

The origin is not a number. We have started with counting 

numbers, introduced fractions and irrational, imaginary 

numbers all about the origin. We can only specify zero to a 

given number of decimal places or significant figures, cannot 

necessarily specify to infinitely many significant figures, 

only get closer and closer to absolute zero. (→ we cannot 

specify a number to infinitely many zeros or critical decimal 

places. One can only get closer to absolute zero as defining 

a larger number of place holders. It is the same for the 

definition of ∞, but in the opposite sense). 

 

THE FINAL CONNECTION 

We have declared the quantity ∞ - ∞ to be a universal 

number, i.e. it lays claim to all possibilities whereby it can 

be equal to zero, or infinity or anything in between, i.e. any 

(finite) constant. But we already know this to be true of the 

quantity 0 × ∞, by Sam’s squeeze theorem and its corollary. 

What if these two terms are in fact equal to each other, as 

they have the same outcome? Let’s see what happens in 

consequence of this conjectured equality. 

 

0 × ∞ = ∞ - ∞. 

 

0 × ∞ + 1 × ∞ = ∞. 

 

(0 + 1) × ∞ = ∞. 

 

∞ = ∞. 

 

That is, equating zero times infinity with infinity minus 

infinity results in a statement which is universally true, 

confirming our observation that the equality of these two 

terms seems likely. So now, finally, we have the two 

differential equations we were looking for: 

 
𝜕2

𝜕𝑥2
(𝜙 −  𝜔) =  

𝜕2

𝜕𝑦2
(𝜙 −  𝜔) =  0  

 

Just a little more on the matter of the (h + y) term. In the 

relevant equation, 2/x2 ( - ω), the only zeroes or infinities 

that occur involve x. Specifically, there are a lot of y/x = 0. 

This means that wherever y occurs, isolated from an x, it 

occurs in the manner (h + y), h ≠ 0. This is what we call a 

first order zero in y, that is, y × K = 0 × K = 0, or, 

equivalently, y ×  = 0 ×  = K.  

Now we started out with one option, y a zero of order n, such 

that 0 × n = 0. As an alternative to that, we integrate 

repeatedly until we do away with our infinity. We expect that 

the order of the zero, y = 0, starts out at n, and is reduced by 

one for each integration. Such that the infinity will vanish 

when you have integrated n times. Now we devise another 

variable, which we call y’. This variable represents a 

multiple of the identity 2/x2 ( - ω). It starts out equal to y, 

y’ = y = zero of first order. But each time you integrate, the 

order of y’ increases, as opposed to the order of y decreases. 

So when you have integrated once, you have y’ × 2/x2 ( - 

ω) = 0 ×  = 0, as opposed to 0 ×  = K, y’ now being a 

multiplicative of 2/x2 ( - ω)  zero of second order. That is 

why you do not have to integrate n times to get 2/x2 ( - ω) 

= 0, in this instance. You only have to integrate once! 2/x2 

( - ω) vanishes, which is the desired result.    

Now we back to this matter of y, y’. y acts as a zero of order 

0n. Either it takes out the term that is specifically in y, (not h 

+ y), and the other term, the term in h + y similarly vanishes, 

(see equation (32) discussion below), or you just integrate 

the entire expression for 2/x2 ( - ω), continually, the order 

of the y = 0 zero decreasing by one, from n initially, until you 

get 2/x2 ( - ω) = 0. What about y’? In line with our 

discussions, it starts out as a zero of order 1. So, if we 

integrate, there is only one direction it can go. It has to 

increase its order, n = 1 → n = 2. So, if it is there, in 2/x2 
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( - ω), as a zero of order 1, then when you integrate, the new 

y’ will have to satisfy 0 ×  = 0, and 2/x2 ( - ω) will 

vanish. But why does it have to change its order at all? 

Consider l’Hôpital’s rule. You start out with f(x)/g(x) = 0/0. 

If you differentiate f(x) and g(x), assuming you do not come 

up with 0/0 again, then you have 0/0 → 0/K, or K/0, or K/K’. 

So it is entirely necessary that the order of at least one zero 

changes. But in the new extension to l’Hôpital’s rule, the new 

theorem that deals with , and not 0 ×  = 0/0 = /, there 

is only one function of x, f(x), not two, f(x), g(x). So, if y’ is 

a zero of order 1, in 2/x2 ( - ω), then it is necessary that it 

becomes a zero of order 2, when you integrate, therefore 

2/x2 ( - ω) will vanish. And as for the matter of why y’ 

suddenly becomes a multiplicative factor of the entire 2/x2 

( - ω) expression, when it started out as just h + y → h, well 

that occurs simply to be consistent with the fact that our nth 

order zero, y, is multiplicative over a large component of 

2/x2 ( - ω), and the other component of 2/x2 ( - ω) 

simply vanishes anyway, again see equation (32) discussion 

below. 

 

A NEW MATHEMATICAL THEOREM – DIVISION 

BY ZERO 

There are two possibilities for division by zero. 

 

(i)     
𝐾

0
=  ∞ 

and 

(ii)     
0

0
 = 0, 𝐾 𝑜𝑟 ∞ 

 

(The option, /0 = 2 we call trivial, we’ll not be bothering 

with that possibility). Now what if you want to find out 

which of the three options is the case in possibility (ii). 

Supposing that: 

 
𝑓(𝑥)

𝑔(𝑥)
 →  

0

0
 

 

as x → 0. Then l’Hôpital tells us: 

 
0

0
 →  

𝑓′(𝑥)

𝑔′(𝑥)
 

 

That is, you differentiate the two functions f(x) and g(x), and 

re-consider the limit as x → 0. If it’s still indeterminant, you 

do it again, etc.  

What about possibility (i), you do a calculation, such as a 

calculation in quantum electrodynamics, or quantum 

chromodynamics, and you come out with an unwanted 

infinity. They get around the problem in QED and QCD by 

a process called renormalization. But we have got around the 

problem our own way! We have instituted a new 

mathematical theorem, to go with l’Hôpital’s rule. You 

integrate. And if the infinity is still there, then you integrate 

again. And so on. Or, you institute an absolute zero, without 

integrating. This is a zero of order n, and we expect that if 

you do it by the other method, integrating, you will have to 

integrate up to n times. Now how do we justify this rule? 

Consider the following quirky analysis 

 

y = x2 → 
𝑑𝑦

𝑑𝑥
= 2𝑥 . 

 

But: 

y = x2 = x + x + x + … + x 

 

So 
𝑑𝑦

𝑑𝑥
= 1 + 1 + 1 + ⋯ + 1 = 𝑥 

2 = 1! 

 

So what is the solution to this seemingly enormous disparity? 

The problem is that you have an unspecified number of 

terms, when you say x times. But the function f(x) = x2 and 

the function f’(x) = 2x have to cater for x → . And when 

you do that, you get an infinite number of terms, and that is 

inconsistent with the limiting nature of calculus. When you 

have an infinity of terms, that is inconsistent with the 

fundamental operation of calculus which, for both 

differentiation and integration involves limits dx → 0. So if 

you throw an infinity in there as well, something 

fundamental changes, because of the possibility that 0 ×  = 

K ≠ 0. So if you break the rules of calculus in this fashion, 

the only way you can rectify the situation is to reduce x from 

infinity. In fact, you have to get x away from infinity as far 

as possible. That is, x → 0, and then you are in agreement. 

Only then will you have no contradiction, only then will you 

have 2x = x.  

So, in our discussion of the cinema problem, you want to 

eliminate an infinity. It is entirely analogous to the calculus 

discrepancy we are considering. So you can do one of two 

things. Either make a zero an absolute zero, that is, make it 

as small as possible, y × n = 0 × n = 0, for any n. Or, you 

can take an anti-derivative, and continue to do so, until the 

infinity disappears. And stop there! Once you have the 

correct result, 2/x2 ( - ω) = 0, if you continue to take the 

anti-derivative any further, you will more than likely come 

out with the wrong result, just as in the operation of 

l’Hôpital’s rule, you stop differentiating f(x) and g(x) as soon 

as you get an outcome 0/0 → 0, K or , otherwise, you get 

the wrong result.  

Now you are likely to have to pay a price for taking anti-

derivatives in this fashion. That price will more than likely 

be the introduction of an integration constant. In the language 

of QED and QCD, this becomes renormalization constant. 

Specifically, 0/0 = 0 → 0/0 = K. Where could such an event 

fit into our discussions above? Recall  - : 0 → . We have 

discussed the meaning of  -  at length, above. It is the 

same thing as 0/0, or 0 × . So in this discussion, we have 

introduced two renormalization constants. Firstly, 0/0: 0 → 

K, and secondly, 0/0: K → . Since the processes 0 ×  = K 

and K ×  =  are mathematically equivalent, the second 

transformation, 0/0: K →  does involve the introduction of 

a second integration constant, renormalization constant, even 

if it is not immediately evident what that constant, K’ is, all 

we see is the first integration constant, K. Multiplying 

something infinitely small, by infinity, to get a finite result, 

K, is the same thing as multiplying a finite quantity, K, by 

infinity to get an infinite result. And we select K, and/or K’, 

to make the equations balance. Most particularly such that 

2/x2 ( - ω) = term 1 + term 2 = 0, terms 1 and 2 of necessity 
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being both non-infinites. We can deal with infinite terms too, 

and we have done so, and you see this where our calculations 

lead to  - , which becomes 0/0 = 0 ×  = /, with the 

possibility for a non-infinite final outcome.  

So this brings us to the matter of infinities in QED and QCD, 

which are fixed by a process called renormalization. 

Infinities arise in the analysis of certain Feynman diagrams. 

And it is not simply a one-off accident, or small number of 

accidents. In QCD an entire renormalization group is 

required. These infinities are a fundamental part of the 

physics. In QED, for example, you get logarithmic 

divergences, log x, (x → ), and you get linear divergences, 

x, (x → ), and you get quadratic divergences, x2, (x → ), 

each of these, in order, being a more serious divergence that 

has to be rectified. The new suggestion becomes, from our 

investigation of the cinema problem, that we remove these 

divergences simply by integrating. Perhaps this is another 

avenue particle physicists should pursue. Or perhaps that is 

what they are doing anyway, in their renormalization 

processes. Because in these fields of study there are things 

called renormalization constants. Perhaps these are none 

other than our integration constants, 0/0: 0 → K.  

So, putting it all together, in consideration of l’Hôpital’s rule 

and our new rule for eliminating infinities, if you have 

f(x)/g(x) = 0/0 = 0, K or , then you differentiate f(x), g(x), 

continually until you arrive at a result of 0, K or . By 

contrast, if you have G(x), could be G(x) = f(x)/g(x), equals 

, i.e. without the possibility of G(x) = 0 or K, then you use 

the new integration theorem, as opposed to the 

differentiation theorem of l’Hôpital. That’s about it, really.  

As well as Renormalization constants in Quantum Field 

theory, (QCD, QED), we have Renormalization differential 

equations. Well, how do you solve a differential equation? 

You integrate, right? It’s beginning to look very much as if 

our new mathematical theorem is consistent with 

renormalization processes in quantum field theory, that is, 

the particle physicists have been using this theorem all along. 

By way of explanation, consider a differential equation such 

as the Schrodinger equation. 

 

(−
ℏ2

2𝑚
 ×  ∇2 + V)𝜓 = 𝐸𝜓     (25) 

 

where 2 = 2/x2+ 2/y2+ 2/z2is the Laplacian, in 

Cartesian coordinates. Such a thing is a frightful mess, how 

are you going to solve it? You solve it by doing things to 

simplify it, right? Firstly, you convert to spherical 

coordinates, x, y, z → R, θ, ϕ. This simplifies matters because 

the potential term V(R) is only a function of R, not θ or ϕ. 

Then, to simplify matters still further, you claim the 

following: 

 

𝜓(𝑅, 𝜃, 𝜙) =  𝜓(𝑅) ×  𝜓(𝜃, 𝜙)    (26) 

 

This simplifies matter because ψ(R) becomes just a constant 

with respect to differentiation with respect to θ, ϕ, and ψ(θ, 

ϕ) becomes a constant with respect to differentiation with 

respect to R. Well, it works! Clearly God, the creator, has 

chosen for ψ(R, θ, ϕ) to be separable, in this manner. And 

with good reason! If you choose this separability, it turns out 

that every atomic orbital in existence has one of only four 

simple geometries, the geometry of the s-orbit, the p-orbit, 

the d-orbit and the f-orbit. That is, all 100 plus types of atoms 

have one of four very simple geometries, for every electron, 

in every orbital. The problem then becomes simply one of 

calculating the value of ψ(R), for each individual electron 

orbit of each individual atom. The size of the orbits. 

Physicists and chemists have fallen short in this endeavor, 

but that is another story. Anyway, that was just to illustrate 

what is involved in solving differential equations, and that is 

what physicists have been doing in their renormalization 

processes in quantum field theory, and it would appear very 

strongly that this is in accordance with our new mathematical 

theorem, our extension to l’Hôpital’s rule.  

 

BACK TO THE CINEMA PROBLEM 

Consider: 

 
𝜕2

𝜕𝑦2  (𝜙 −  𝜔) =  0  

 

As y → 0, 0 × [1 + (h/x)2]2 → h. It is easy to solve this for x. 

Use the following identity: 

 

0 ×  = constant. 

 

We’ll justify this shortly. For the moment, note that the 

product of zero and infinity is any finite nonzero constant. 

So, if y → 0, then: 

 

[1 + (
𝒉

𝒙
)

𝟐

]𝟐 = ∞      (27) 

 

with the obvious consequence being that x → 0. That is, the 

trajectory that maximizes the increase in viewing angle with 

distance, r, will never make it into the y negative region, so 

our analysis is correct. In the preceding analysis, we have 

made the following two connections: 

 

(1) 𝑦[1 + (
𝑦

𝑥
)2]2 = 0 × [1 + (0 ×  ∞)2]2 

  

=  0 ×  [1 + 0]2 =  0      (28) 

 

Similarly,  

 

(2) 
𝒉+𝒚

𝒙
 →  

𝒉

𝒙
 

  

that is: 

 
𝑦

𝑥
 = 

0

0
 = 0× ∞ = 0    (29) 

 

These two identities have, furthermore, taken care of the zero 

in the denominator associated with the x2 terms which we 

multiplied out of the equation. Mathematical justification of 

0 ×  = constant. Perhaps we can justify 0 ×  = 𝑧𝑒𝑟𝑜, 

according to Sam’s squeeze law: 

 

0 × 10 = 0, 

0 × 100 = 0, 

0 × 1000 = 0. 
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It follows by extrapolation that 0 ×  = zero. We explain why 

this is a faulty analysis. Consider: 

 

 × 100 = , 

 × 10 = , 

 × 1 = , 

 × 0.1 = . 

 

Using the same logic employed by Sam, it follows by 

extrapolation that  × 0 = . That is, we have used the same 

analysis to predict that on one hand 0 ×  is zero, and on the 

other hand 0 ×  is equal to infinity. The only logical 

conclusion to draw is that the logic was erroneous, and that 

in fact 0 ×  is equal to anything but 0 or . That is, 0 ×  

is equal to any finite, nonzero constant, as per the above 

assumption. Physical justification of 0× = constant. Physics 

tells us that a photon has a finite mass. We acquire this 

knowledge from two separate approaches: 

 

(1) If a photon has a finite, non-zero mass, its momentum 

will be given by 

 

𝑝 = 𝑚𝑐 =  ℏ𝑘 =  
ℎ

2𝜋
 ×  

2𝜋

𝜆
    (30) 

 

To verify that this is the correct approach, we equate the 

Einstein mass-energy with the Planck photon energy. We 

know that this equality must hold as Einstein’s special 

relativity was derived upon consideration of the passage of 

light, and further Einstein’s photoelectric theory of light 

draws upon the Planck energy. So: 

 

(2) When mc2 = h, v =  × , therefore we have 𝑚𝑐2 = 
ℎ𝑐

𝜆
  

or 

𝑚𝑐 =  
ℎ

𝜆
        (31) 

 

as per the de Broglie equation, (1) above. Now this analysis 

applies to a photon travelling at the speed of light, c, as we 

know they must do. The Michelson-Morley experiment 

confirms that there is no reference frame where the speed of 

light is reduced to less than c, and it is upon this premise that 

Einstein derived his special theory of relativity. So we expect 

that if a photon were to be slowed down from speed c, its 

mass will vanish. Again, this expectation is verified by 

Einstein’s analysis. Supposing a photon has a zero-rest mass. 

That is, we do not observe a stationary photon, as such an 

entity would be massless.  

Now Einstein’s special relativity tells us that as the speed of 

a (massive) body is increased from zero to c, the speed of 

light, its mass is amplified infinitely, that is, its mass 

approaches infinity. We expect Einstein’s relation to hold 

also for massless bodies, (such as a photon). Its mass is 

multiplied infinitely from zero as its speed increases from 

zero to c, according to the identity 0 ×  = constant, above. 

This total mass at the speed of light is nonzero, and finite, 

and inversely proportion to the wavelength of the radiation – 

we assume of course that the electromagnetic radiation is 

non-infinite and nonzero, in mass, m = h/c2. The photon 

mass is given by m = h/c. For speeds less than c, the zero 

mass is multiplied by a finite multiplication factor, and of 

course 0 × finite quantity = 0, (Sam’s analysis), such that 

even photons of nonzero, non-infinite velocity have a 

vanishing total mass. That was our position before we knew 

a little more about it. The photon does have zero rest mass, 

but it begins its existence as a stationary electron/positron, p 

= 0 in Einstein’s equation, E2 = (pc2)2 + (moc2)2. It has its rest 

mass removed progressively in the acceleration process, v: 0 

→ c, such that the total mass m = mo/√(1 – v2/c2) is a 

constant. Not, as we mistakenly thought previously, that the 

rest mass magically vanishes just before speed v = c is 

attained, such that m = 0 for any part of the process other 

than the arrival at v = c. We were wrong about that! As a 

corollary, the total mass of the stationary photon is equal to 

its rest mass, zero, as is the total mass of a non-stationary 

photon, with the proviso that such a massless photon does 

not acquire a speed as large as c.   

Consider now an electron wave, described by the de Broglie 

relation above, p = h/. Such a wave can have an infinite 

wavelength, this occurs at speed zero. We now use another 

identity from Einstein’s special relativity, the Lorentz 

contraction. This states that as an entity approaches the speed 

of light, its dimension along the light axis is reduced all the 

way to zero. That is, excepting the instance where its 

wavelength was infinite to begin with, this infinite 

wavelength is reduced infinitely from  to some constant 

value as this matter wave, electron, becomes a photon, 

according, once again, to the identity: 

 
∞

∞
=  ∞ ×  0 =  some nonzero, non-infinite constant. 

 

A new thought is now proposed. We see, immediately above, 

in the acceleration process, massive fermion → massless 

photon, that the total mass m is a constant, m = me, the 

electron/positron rest mass, and mo: me → 0. Well consider 

that stationary, massive fermion, speed v = 0. And consider 

the de Broglie expression, p = h/ → mv = h. The 

requirement is clearly that  = . m = me is a constant, and v 

= 0. So we institute an infinite Lorentz contraction, Δx = 

(Δx)o × √(1 – v2/c2), and v: 0 → c. So if the length quantity 

Δx is the wavelength of the fermion, in the process of losing 

its rest mass, becoming a photon, then you have, in 

accordance with this proposal, :  → K, some finite value, 

(Δx)o = , Δx = K. We learn something new about the 

Reverse Higgs process, we learn that of the three variables 

of Einstein’s special relativity, the mass m = mo/√(1 – v2/c2), 

the length Δx = (Δx)o × √(1 – v2/c2) and the time Δt = (Δt)o × 

√(1 – v2/c2), the mass m and the time Δt are invariant, but the 

length is not. For the invariability of time under this 

transformation, see Autobiography of James Russell Fields. 

The proposal is that if you accelerate a clock, along with a 

massive fermion, onto a photonic wave packet, v: 0 → c, then 

that clock will tick at exactly the same rate as it was ticking 

before you made the transformation. That is only if you are 

talking about the Reverse Higgs process, mo: me → 0. And 

similarly, of course, the mass is invariant. In the Reverse 

Higgs process, only Δx →  is a variable. This does not 

apply to what we call the energy input process, the low 

energy limit Einstein got by using a Taylor series expansion 

of E2 = (pc2)2 + (moc2)2, whereupon he deduced a constant 
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rest mass, E = moc2 + ½mov2/√(1 – v2/c2). This is not the 

Reverse Higgs process, and it is evidently not because there 

is no ghost involved, whereupon the kinetic energy term has 

a ½ factor, no ghost, in contrast to the Reverse Higgs process, 

where there is no ½ factor in the KE term, (pc)2 = mc2 ≠ 

½mc2. That is because an electromagnetic wave has a dual 

oscillation, of the E-oscillation and the B-oscillation, one 

carries the fermion, the other carries the ghost. There are two 

kinds of photon, one an electronic photon with a positron 

ghost, one a positronic photon with an electron ghost. If 

photons are charged in this manner, why do they not interact 

with external electromagnetic fields? Because the Lorentz 

force is zero, FLorentz = q(E + v × B) = 0 → E = -v × B. Verify 

that for yourself, the ratio of the amplitudes is E/B = c, the 

direction of propagation, v, is that of the Poynting vector P = 

1/ (E × B). 

We’ve fully covered photons. What then, about electrons? 

These do not have a vanishing rest mass. In analyzing the 

conversion between an electron at rest and a photon 

travelling at speed c, our analysis indicated the electron had 

an infinite wavelength at zero velocity according to the de 

Broglie wavelength, p = h/, or mv = constant, whereupon 

 →  as v → 0, for a non-vanishing electron rest mass, m = 

me. Now an electron can be incorporated upon an 

electromagnetic wave packet. It can be accelerated to speed 

c, whereupon it propagates upon the electromagnetic wave 

packet. In so doing, it loses its rest mass, such that what was 

once a rest mass becomes a total mass. For this to occur, 

however, in the stationary frame of the electron, the 

electromagnetic frequency must be such that it matches the 

electron rest mass, me, according to me = hc/, as above. If 

this identity is not satisfied, one must accelerate the electron 

to such a velocity that the Doppler shifted electromagnetic 

wavelength does satisfy this equation, in the rest frame of the 

electron. If this equation is not satisfied, the electron can 

never be incorporated onto the electromagnetic wave packet. 

Once the electron is propagating in such a manner, however, 

it is a simple matter to adjust the electromagnetic frequency 

by Doppler shift, such that the propagating electron appears 

to have a rest mass other than me, although it is safe to say 

this is an apparent total mass, not rest mass, according to our 

supposition that as an electron accelerates to be incorporated 

on the photon, its rest mass becomes a total mass.  

 

 

ANALYSIS OF THE X-PARTIAL DIFFERENTIAL 

IDENTITY, IN THE LIMIT X, Y → 0 

Again, as y → 0, we substitute into the results of the 2/ 

(x2/y2) = 0 analysis and find: 

 

0 = ℎ ×  (
−2

𝑥3
× [1 + (

ℎ

𝑥
)2]−1) + {

1
𝑥2  ×

2ℎ2

𝑥3

[1 + (
ℎ
𝑥
)2 ]2

} 

(32)  

 

However, in setting y = 0, and making one term on one side 

of the relevant equation equal to zero, we have neglected the 

fact that this y = 0 is multiplied by  in the limit as x → 0, 

and that therefore we might expect that the term does not 

vanish, as we have made the assumption that 0× = constant 

≠ 0 or , where we have claimed it is equal to zero. The 

crucial fact in overwhelming this dilemma is that one of these 

terms is zero as y → 0, and the other is  as x → 0. In such 

an instance, we have to resort to Sam’s squeeze law, 

according to which y → 0 much more quickly than x → 0, 

(Figure 3), such that 0 ×  → 0, not some constant value, as 

x, y → 0. See the analysis below, culminating in equation 

(36).  

 

 

PREVIOUS ATTEMPT TO ACCOUNT FOR THE 

VARIABILITY OF 0 × N 

So in this instance, supposing we are multiplying zero (y= 0) 

by a number of infinities, say 3, (x = 0), then we proceed as 

follows: 

 

(0 × ) ×  ×  = (0 × ) ×   = 0 ×  = 0 

 

We are dealing with two propositions. In one instance, Sam’s 

squeeze law does apply, (x,y) → (0,0). In the other we have 

a collection of terms multiplied together that are infinities, 

all arising from x = 0, such that infinities can be divided by 

infinities, or equivalently, 0 ×  = constant ≠ 0 or .  

It appears that we can justify Sam’s squeeze law in instances 

where the 0 and  are associated with two separate variables, 

say x and y, rather than x and x. Let us consider the Lorentz 

contraction, in this case the wavelength, , and the 

contraction are both dimensionally along the x-axis, so the 

squeeze law does not apply, the identity 0 ×  = (non-zero) 

constant applies, as we have seen.  

That was the position we took previously. Now we have 

modified our arguments considerably, see all previous 

discussions, other than immediately above. As promised, we 

shall confirm the identity expressed by equation (32), above: 

 

~ −𝑥−3 𝑥2 + 
1

𝑥5  × 𝑥4= 
1

𝑥
 − 

1

𝑥
 =  ∞ −  ∞ = 0   (33) 

 

Consider another element of special relativity, the (infinite) 

multiplication of mass as v → c.  

 

𝑚 = 
𝑚0

√1− 
𝑣2

𝑐2

       (34) 

 

In the case of photons, the squeeze law does apply, one can 

go arbitrarily close to the speed of light, and the photonic 

mass will still be mo × 0 = 0. Wrong! See above!  

Now we equate a total electron mass propagation upon an 

electromagnetic wave packet with an electromagnetic 

wavelength, or more specifically a frequency, (the identity 

acquired by putting the Planck energy equal to the Einstein 

energy). So the special mass variation applies to photons as 

well as matter, (electrons). The crucial point here is that 

photonic and electronic mass-energies are given by the 

amplitude of the wave. In the case of an electron, the mass is 

given by the amplitude of the wave. In the case of photons, 

the mass-energy, E, is given by the amplitude of the wave. 

Therefore, in this case, the squeeze law does apply, the zero 

and the infinity are terms in y and x, respectively.  Now the 



HIJ, Vol 4, No 3, pp 37-57, Sep 2024 J.R.Farmer 

 

 

47 

amplitude of a wave is orthogonal to its direction of 

propagation, as pictured below: 

 

 

 
Figure 3: Orthogonal mass-energy amplitudes and wave 

propagations, for electrons and photons 

 

In the other part of the analysis, directly below, we find that 

 -  = 0, not the general constant one would expect, i.e. this 

constant is in this case equal only to zero. Does this not ring 

a bell? One can have 0 ×  = 0, (squeeze law), or 0 ×  = , 

(alternative squeeze law, depending on which term 

approaches zero faster), or alternatively, 0 ×  = constant. 

Similarly,  -  is expected to be equal to a constant which 

may or may not be equal to zero. Where the squeeze law 

operates, this constant is required to be zero, in accordance 

with the analysis for the cinema problem with elevation. 

Now suppose x → 0, then: 

 

0 =  −∞3  ×  (∞2)−1 + ∞2  ×  
∞3

(∞2)2
= ∞ − ∞  (35)  

 

Now  -  = 0 is certainly a possibility, but it is not the only 

possibility.  

Consider: +constant = , thereby - = -constant. Perhaps 

the requirement that x, y cannot change sign in our analysis 

results in the following deduction: constant = -1 × constant, 

thereby: constant = 0. Now in the foregoing analysis, we 

have divided infinities by infinities. We have from the 

physical interpretation of 0 ×  = constant that to divide 

infinities: ∞/∞ = ∞ × 0 = constant. But consider the y-

partial differential equation analysis. We have stated:0 ×  = 

constant = h as x → 0. However, supposing we re-interpret: 

x → 0, therefore 
𝒉

𝒙
→ ∞, (

𝒉

𝒙
)𝟐 → ∞𝟐 then finally: [1 +

(
ℎ

𝑥
)2]2  →  ∞4 , whereby: 0 × 4 = (0 × ) × 3 = constant × 

3 =  ≠ h, since h is a finite quantity. We have a 

contradiction, as h was assumed from the outset to be finite. 

Now consider equation (32), above. We are in the analysis 

that follows (32) dividing infinities by infinities. On the left-

hand side, we have zero. On the right-hand side is a sum of 

two terms, the one on the furthest right written as a fraction. 

In this analysis the conclusions seem to be consistent with 

what we are looking for. But let us generalize. Supposing the 

nominator of the fraction is an infinity of order p, i.e. it goes 

to p in the specified limit. Then supposing the denominator 

is similarly an infinity of order q, approaching q. Then the 

other term is an infinity of order r, approaching r.  

Next, if we divide both sides of the equation by the first term 

on the right-hand side, the one that hasn’t been written as a 

fraction, and then add the negative term, (the non-fractional 

one), to both sides we acquire an interesting identity: 

 

∞𝑝−𝑞−𝑟 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡      (36) 

 

This now has the same form as the identity we got previously 

from the y-partial differential analysis, for which we have 

two distinct possibilities, both at odds with each other in the 

analysis: 0 ×  = h? Or is it, 0 × 4 = h? 

It was thought initially we could get around the problem of 

the h →  in the preceding analysis by concluding that in the 

y-partial differential analysis we are not dividing infinities 

by one another, whereas in the x-partial differential analysis 

we are. However, the complete equivalence of the x- and y-

partial differential analyses according to equation (36) makes 

nonsense of this interpretation, so there is here no way out of 

the unwanted conclusion that h → . So, we seek some other 

way out of the dilemma. We require that in the y-partial 

differential analysis, it is not possible to divide infinities by 

infinities. We have a term in 4, but it is not permissible to 

divide this term by infinity as an alternative to multiplication 

by zero. The very simple reason for this is that the zero term 

is a term in y, whereas the infinite term is a term in x. 

Although x, y both approach zero in their respective limits, 

they do so at different rates. Not only that, but the respective 

derivatives /x and /y behave very differently in the 

vicinity of (0,0). The only sensible conclusion to draw in 

consideration with the foregoing analyses is that in the 

ultimate limit of  maximization, the association between x 

and y occurs as in the figure below, in the limit 

(x, y)→ (0,0). 

 

 
Figure 4: Gradients dy/dx in the limit of maximization of 

/r. y approaches zero more quickly than x, y/x = 0/0 = 0 

 

 

THE NON-POTENTIAL FIELD, Θ/R 

As we have concluded previously,  is a potential field as the 

change in its value between any two points in the region 

under consideration is independent of the path taken between 

those two points. Not so for the field, /r. Now in our 

analysis, we have optimized the rate at which  changes with 

distance r along the given trajectory. We have, in the figure 

above, its behavior in the vicinity of (0,0). Consider two 

points on this trajectory near (0,0). If we are to maximize the 

rate at which  increases along path length, wouldn’t it be 

more appropriate to draw a straight line between those two 

points, and follow that trajectory? As per Figure 4 below? 

The crucial point is that /r is not a potential, that it is a 

quantity which depends on direction as well as position. 

Wouldn’t it result in a greater rate of change of  if one did 

follow the straight line between those points? So we might 

expect that if we take the short cut, then when we get to the 

destination, the angle  is larger for the shorter, straighter 

path. This is of course nonsensical as we are at the same 



HIJ, Vol 4, No 3, pp 37-57, Sep 2024 J.R.Farmer 

 

 

48 

position. The angle  must be the same, whichever path we 

used to get there. 

 

 
 

Figure 5: To increase  more, take a short cut 

 

We must attribute this uncomfortable consequence of our 

analysis to the fact that /r, which we sought to maximize, 

is not a potential field. In particular, when it reaches its 

destination point, as in the figure above, the direction of the 

trajectory is somewhat different. It cannot get back on track 

instantaneously, as this would require an infinite 

acceleration. This brings us to the meaning of /r. 

Supposing we assume that the observer travels at a constant 

speed along the trajectory, r: 

 

𝑣 =  (
𝑑𝑟

𝑑𝑡
) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡      (37) 

 

Then:  

 

(
𝜕𝜃

𝜕𝑟
) =  (

1

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡
) ×  (

𝜕𝜃

𝜕𝑡
) 

 

That is: 

 

𝜕𝜃

𝜕𝑟
=  

1

𝑣
(
𝜕𝜃

𝜕𝑡
) → 𝑣 = (

𝜕𝜃
𝜕𝑡
𝜕𝜃
𝜕𝑟

) =  (
𝜕𝜃

𝜕𝑡
) (

𝜕𝑟

𝜕𝜃
) = (

𝜕𝑟

𝜕𝑡
) 

(38) 

 

Now we are dealing with a constant speed, but the direction 

in which the observer moves is variable along the path r, such 

that there is an acceleration. Now if the observer in his 

cinema chair changes direction abruptly, then this 

acceleration will be infinite. 

 

 
Figure 6: Infinite acceleration as observer changes paths 

abruptly from the optimal path, /x (/r) = /y (/r) = 

0 

 

 

Now of course the observer does not have to change paths 

abruptly. He or she can follow a curved trajectory, (more 

curved than the optimal trajectory), in the vicinity of the 

region where the short cut commences. When the short cut 

trajectory once again approaches the vicinity of the optimal 

path, it is necessary to change the direction of the trajectory 

once more, to get back on the optimal path. This will require 

again an element of acceleration, an acceleration in excess of 

that occurring in the optimal path trajectory, in the vicinity 

of where the two paths again coincide. In particular, as x → 

0, it is essential that the erroneous direction of the non-

optimal path be forced to coincide with that of the optimal 

path, through this excess acceleration such that the trajectory 

becomes horizontal, y = constant = 0. Now of course our 

hapless observer will ultimately crash into the wall of the 

cinema, x = 0, as he proceeds at constant velocity v = dr/dt. 

However, for a very brief instant, depending on the 

magnitude of the speed v, the viewing angle  will approach 

its maximal value. Is this  = π or π/2? It would appear to be 

π/2, and we would expect an ultimate angle of π to be 

achieved if we had started in the y-negative region. However, 

this is puzzling, as there has been no reference to the y-

negative region in the analysis. The trajectory has 

approached (x, y) = (0,0) with no reference to this other 

region. The crucial point is, how far would the trajectory go 

into the y-negative region? What would be the benefit of say 

moving into this region insofar as y → 1 cm as opposed to y 

→ 1 mm, and so forth? It is evident there is no significant 

reason why the trajectory would impede on the y-negative 

region, and so our analysis whereupon x → 0 as y → 0 is the 

correct analysis. The total change in  between any two 

locations in the region under consideration of course cannot 

depend on the path taken. But the optimal path is curved, not 

a straight line. Why then, for a constant speed v, is the rate 

of change of  with distance, /r, not more optimal along 

the short cut? Again, Einstein’s special relativity provides us 

with a solution to get out of this dilemma. 

 

SPECIAL RELATIVITY AND THE TWIN PARADOX 

In our analysis above of the physical meaning of 0 × , we 

have made use of the Lorentz contraction, specifically of the 

wavelength of an electron wave packet as it is incorporated 

onto the photonic wave packet, :  → constant as v: 0 → c. 

There is in special relativity a corollary to the Lorentz 

contraction, known as the time dilation. Just as lengths of 

objects contract as speed v → c, so time expands. That is, 

moving clocks move more slowly than stationary clocks, and 

this discrepancy becomes increasingly greater, approaching 

infinity, as the moving clock approaches the speed of light, 

c. In the limit of speed c the moving clock does not tick at 

all. An interval of time in the non-moving frame is infinitely 

larger than the corresponding interval in the moving frame. 

Well, we have had something additionally to say about that! 

Special Relativity operates in two respects, (1) the energy 

input scenario, E = moc2 + ½mv2, and (2) the Reverse Higgs 

process, mo: me → 0. The photon clock will only be 

stationary if you employ process (1), accelerating to the 

speed of light, whereupon the mass m = mo/√(1 – v2/c2) is 

infinite, which is of course impossible. Equally, (1) cannot 

be a mechanism for mass at v = c. Both mass and time require 

process (2) to achieve v = c. But, strangely enough, for 

electron → photon wavelength, one can employ the Lorentz 

contraction, (Δx)/ = Δx × √(1 – v2/c2), without any reference 

to the Reverse Higgs process, for the electron acceleration 

process, and come up with a sensible result. (Infinite mass 

and frozen clocks are not sensible results!) We can 
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rationalize this, however, this special relativistic discrepancy 

between length and mass/time. Consider General Relativity. 

Stationary in a gravitational field, a clock ticks slowly, the 

stronger the gravitational field, the more slowly it ticks. If 

you elevate a mass in a gravitational field, it becomes 

(microscopically) heavier. E = mc2, so if you elevate a 10 kg 

mass by 10 meters, its mass will increase by 1000/(3 × 108)2 

~ 10-14 kg = 10-11g. This would appear to be the solution of 

as to what dark matter in the universe is. See calculation, 

Grand Unification, [1]. There is no corresponding variation 

of lengths with respect to gravitational fields. So the three 

variables, (a) time/mass versus (b) length are consistent in 

this categorization, between special relativity and general 

relativity, which is very pleasing because, obviously, we are 

in the business of unifying special and general relativity into 

a scientific principle we call the ultimate theory of relativity, 

a theory that does not stop at gravitation but is inclusive of 

acceleration unto any manner of force.  

Supposing we conduct a thought experiment, in which a pair 

of twins start off in the same location, but one is in a rocket 

ship and the other is stationary. The clock of the moving twin 

moves more slowly, so he ages more slowly. When 

eventually the rocket ship stops, turns around and comes 

back, we might expect that as they are reunited, the twin who 

was in the rocket ship would be younger. However, consider 

things as perceived by the twin in the rocket ship. In his 

frame, he himself is stationary, whereas his twin, on planet 

earth, is rocketing away, with the earth, at that same rocket 

speed velocity measured by the twin who is not in the rocket 

ship. According to the twin in the rocket ship, he would 

expect his twin, the earthling, to be younger. What is the 

solution to this paradox, it is not possible for each of the 

twins to be younger than the other, we require that one of 

them is younger and the other is older? 

The solution is in the acceleration, as per the discussion 

above. The twin in the rocket feels his acceleration, as he 

takes off, and as he stops and turns around to come back. The 

twin back on planet earth feels no such acceleration. The 

twin on earth is in Newton’s inertial frame of reference, 

while the other is not. The thing about special relativity is 

that it was derived in the pretext of a constant velocity. It is 

a special case, it does not necessarily apply to situations of 

non-constant velocity, i.e. accelerating systems. If one is 

dealing with accelerations, one needs a more general theory, 

Einstein’s theory of General Relativity. Of course, the main 

purpose of this theory is to provide a satisfactory analysis of 

the motion of the planets under the force of gravity. The huge 

success of the theory is in the prediction of the precession of 

the perihelion observed in the planetary motions in our solar 

system.  

Applying this logic back to the case of the elevated cinema 

observer, we expect that there is some kind of space-time 

discontinuity in the vicinity of the accelerating regions where 

the observer moves from the optimal path onto the shorter 

path, such that when the observer gets to the end of the short 

cut, and revises his direction to coincide with the direction of 

the observer on the optimal path, through a certain 

acceleration in excess of that occurring in the optimal path, 

the viewing angle will be , the same as observed by the 

observer who has followed the optimal path, as common 

sense tells us it must be. 

We can apply this logic back to the twin paradox. The logical 

assumption will be that both twins will be the same age when 

the one returns from his trip in the rocket ship. There is a 

discontinuity in space-time which becomes more abrupt the 

greater the acceleration. In the case of infinite acceleration, 

this becomes completely abrupt. The more abrupt the 

acceleration, the greater the distance travelled in the short cut 

between where the observer leaves the optimal path and 

where the observer is reunited with it. 

  

 

 
 

Figure 7: The cinema paradox (Figure 5 above) becomes the 

twin paradox 

 

Of course, only at very large speeds will there be a 

measurable time dilation such that the clock of the 

accelerated observer travels more slowly, and he thinks he 

has travelled further than he in fact has. This thought 

experiment only applies at very high speeds, v. In the 

absence of high speeds, this thought experiment reduces to 

the problem of finding the optimal viewing distance, x, for 

various elevations y.  

 

THE SQUEEZE LAW AND SPECIAL RELATIVITY 

Consider m = mo / √ (1 – v2/c2). The crucial point here is that 

the photon loses its rest mass, mo: me → 0 = 0 × me, and the 

electron similarly loses its wavelength, :  → K = 0 × , 

as v → c. So as previously we prioritized the three special 

relativity variables, time, length, mass, as time/mass versus 

length, now we seek to unify all three variables. So, talking 

about rest mass, not mass. So, talking about photon, not 

electron. Not the Reverse Higgs acceleration process, but just 

in consideration of the gravitational effects on a fermion that 

has been fully converted to a photon. So, if that photon is 

climbing out of a gravitational field, it loses frequency, just 

as a cricket ball climbing out of a gravitational field loses 

kinetic energy. And a photon falling into a gravitational field 

increases its frequency → a falling cricket ball increases 

its KE. So, we go from the classification mass/time + length 

to mass + time + length, which is a very nice symmetry, and 

we are very happy with it.  

We seek some kind of an equivalence between time, mass, 

length, as they appear in Einstein’s equations of special 

relativity, all associated with a Lorentz factor, √(1– v2/c2). So 

we had mass/time + length, length () the odd one out. Then 

we had mass + time + space, no odd one out. Pursuing this 

matter further, time cumulative in the twin paradox, depends 

on what happened before, not just at that instant of time, 

(whatever instant in time means, Einstein tells us there is no 

absolute simultaneity), versus mass/length not cumulative, 

(doesn’t matter what happened before). Finally, just on 

consideration of the bare variables themselves, observed 

mass increases, m = mo/√(1– v2/c2), whereas observed time 

decreases, the time intervals of the moving clock are 
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observed to decrease, (Δt)/=Δt√(1–v2/c2), and finally, 

observed length decreases, the observed length is (Δx)/= 

Δx√(1 – v2/c2). So we have an absolute symmetry of time, 

mass, length, it is possible to examine them in such a fashion 

that they all stand on equal ground, or in such a fashion that 

mass stands on its own, or in such a fashion that time stands 

on its own, or in such a fashion that length stands on its own. 

A marvelous symmetry, and we are very happy with it!  

 

A PHYSICAL MODEL TO BASE THE CINEMA 

ELEVATION PROBLEM UPON – 

ELECTROMAGNETIC FLUX TUBES  

A flux tube is a helical arrangement of magnetic (electric) 

field lines, with a central axial field. The helical surface field 

lines act as propagation vectors for electrons (positrons). We 

have seen how electrons can be accelerated to speed c, 

whereupon they propagate upon electromagnetic wave 

packets. Their rest mass becomes a total mass. In the case of 

fermionic propagation on helical surface field lines, these 

helical field lines define electromagnetic propagation vectors 

for fermions. Now the fermion on its helical pathway has two 

components of its total velocity, c. It has an azimuthal 

velocity, vaz, associated with the circular part of the motion, 

and an axial velocity, vax, the component in the direction of 

the central field. Thus: 

 

|vax + vaz| = c      (39) 

 

 

 
Figure 8: An electromagnetic flux tube 

 

 

The axial velocity, vax, will be our extremized displacement 

vector, dr/dt, that we have dealt with at length in our cinema 

problem with elevation. We sought a displacement such that 

the rate of change of the angle  with distance was 

extremized. Minimized. This becomes a rate of change with 

time along the pathway r, for a given speed v = dr/dt.  

We are concerned with the location at the time when the 

acceleration commences. Instantaneous reversal, then we 

have a straight line, straight pathway, all the way to the 

destination, the re-union of the two twins. A straight line, 

then we have the time discrepancy paid back at a constant 

rate with time/distance on the return journey. Non-

instantaneous acceleration, then some of the pay-back will 

occur in the acceleration phase, and after the acceleration 

phase the payback will not occur linearly with time. With 

regard to a non-instantaneous acceleration, that involves 

further increments of time dilation with increments of 

velocity, those increments will also be paid back in the 

acceleration phase. Just as for an instantaneous acceleration, 

the return journey does not have to be accounted for 

separately, it is accounted for by the reversal in the laws of 

special relativity, owing to twin 2 reversing his direction with 

respect to the photon. The extra increments of time dilation 

owing to the acceleration are paid back on account of the fact 

that it is an acceleration. 

 

  

 
Figure 9:  A Twin Paradox interpretation of the cinema 

trajectory. Vertical trajectory, (y-direction), corresponds to 

zero acceleration, effective speed v= 0. Horizontal trajectory, 

(x-direction), corresponds to infinite acceleration, a = 1, and 

effective speed v = . K, K/ are variables which we define 

below. The acceleration occurs at point P. Point T indicates 

the destination, the re-union of the twins 

 

 

Consider, in the twin paradox, the acceleration a → 0. Only 

in the absolute limit a = 0 do the twins never re-unite. For 

infinite acceleration, the time-dilation payback occurs 

exclusively between points P and T, i.e. not P → P → T, and 

concerning this limit, it involves the maximum rate of time-

dilation payback in the region P → T. Now regarding 

distance travelled in the acceleration region, (zero if a = 1 = 

), we have d →  as a → 0. The total time-dilation payback, 

which we call Δt, is the same regardless of the acceleration, 

in accordance with our discussions. It’s just that for a = , 

all of Δt occurs in the P → T region, but for decreasing a, Δt 

occurs increasingly in the acceleration region, that is, outside 

of the P → T region. Now let d be the total distance travelled 

after the onset of the acceleration. For a = 1 = ∞, this distance 

is just the distance between points P and T. For reduced 

accelerations, this distance also includes the distance 

travelled in the acceleration, being twice the distance 

travelled from the time the acceleration begins, at point P, 

until twin 2 is stationary. So we define: 

 
1

𝑣
 = 

∆𝑡

𝑑
 → 0 𝑎𝑠 𝑑 →  ∞  , 𝑎 → 0    (40) 

 

Now consider the x- and y-axes in Figure 9 above. As 

acceleration a → 0, the trajectory is 100% vertical. As a → 

1, the trajectory becomes the diagonal straight line, from P 

to T. We define speed, v, as the rate in time at which twin 2 

follows the trajectory indicated in Figure 9, and d an 

increment of distance along that trajectory. So v = d/t. For a 

= 1 = , v = 0, the trajectory never gets going, twin 2 is stuck 

on the y-axis, indeed he never gets moving at all in this 

abstract space we are investigating. The twins never re-unite. 

Conversely, as a → 1, infinite acceleration, the speed of twin 

2 along the trajectory is maximized.  

Now what is the point of this effective speed, v, in this 

abstract space? Consider that the time dilation payback rate, 
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Δt/t is a constant, in this abstract space. So the slower the 

effective velocity, v, the greater the rate with distance, d, that 

time dilation payback is liberated. And d becomes absolute 

space, not merely this abstract space we have devised! Along 

the y-axis, the a = 0 trajectory, v = 0. Along the P → T 

trajectory, a = 1, you have v = . So what do we do with our 

two variables, v and v? We divide one by the other to get 

something dimensionless, ok? Because surely a =  = 1 is 

some kind of a venture into dimension lessness! So as a → 

0, you have v(initial) → d/t = 0, and v (final) → d/t = . The 

reason being that in the limit a→0, the trajectory increasingly 

approaches what we are trying to represent by the dashed line 

in Figure 9. Initially, as good as stationary, but rapidly 

achieving maximal speed v = , speed along the x-axis. So: 

𝑑/𝑡: 0 → ∞ , and multiply by 1/𝑣 = ∆𝑡/𝑑 → 0, then: 

                        
𝑑

𝑣𝑡
: 0 → 𝐾′       (41) 

 

Now K is the maximal rate of time dilation pay-back, as 

shown in Figure 9, and it occurs for a = 1. 𝐾′ is as shown. K 

and 𝐾′ correspond to points of equal gradient on the two 

trajectories, the a = 1 trajectory, (infinite acceleration), and 

the a < 1 trajectory, (non-infinite acceleration). As a → 0, 𝐾′ 
lies increasingly to the left, towards x = 0. So for a → 1, you 

have maximal rate of time dilation pay-back, Δt, in the region 

P → T, and it being a constant, and for a → 0, you have 

minimal rate of time dilation pay-back, it approaching a 

constant minimum. And, somewhere in between, 0 < a < 1, 

you have maximal variation of the time rate of time-dilation 

payback, Δt/t, in the region P → T. That is, the gradient of 

the trajectory line in this abstract space achieves its 

maximum curvature in the region P → T, somewhere in 

between a = 0 and a = 1. And that is what the cinema problem 

is all about! And now we have created some physics, out of 

something that seemingly was trivial in its physical context!  

It all worked because the onset of the acceleration signified 

a progression which would ultimately result in the reversal 

of the direction of propagation of the electromagnetic wave 

relatively to twin 2. Because of the loss of absolute 

simultaneity, according to special relativity, you cannot pin 

down the onset of the acceleration as being a separate event 

to the actual reversal, the point in time at which v (twin 2): -

 → 0 → +. Therefore, you do not have to bother with the 

additional time dilation that results from a multitude of 

constant velocity increments in the acceleration phase, just 

as you do not need further clock corrections on account of 

the reverse journey. So, you are only concerned with the 

clock discrepancy that occurred in the outgoing journey, 

prior to the onset of the acceleration, and with how much of 

that will be paid back in the acceleration phase, and how 

much will be paid back after the acceleration phase, that is, 

on the P → T trajectory. And for instantaneous reversal, (a = 

1), you have a straight line on the return trajectory, and as 

you decrease a from 1 to zero, the trajectory remains 

connecting points P and T, but with increasing curvature 

from the straight line trajectory of a = 1, through a curvature 

maximum and then decreasing curvature, until finally you 

arrive at a = 0, or near a = 0, whereupon the trajectory in the 

P → T region approaches a straight line again, but in this case 

a horizontal straight line. Returning to Figure 8. Now the 

azimuthal velocity, vaz, the circular part of the electron 

motion, is responsible for the central field, B, (E in the case 

of positrons on the helical pathway, E). This is according to 

the right-hand rule, whereupon the thumb points in the 

direction of the current and the fingers indicate the direction 

of the field lines in a circular configuration. According to the 

magnitude of vaz is the central flux density. The larger vaz, 

the larger the fermionic current, therefore the larger the 

central (axial) flux density according to Ampere’s law. Now 

we have Faraday’s law: 

 

𝐸𝑀𝐹 =  −
𝑑Φ𝐵

𝑑𝑡
      (42) 

 

where EMF, the electromotive force, is an energy, and ΦB is 

the flux of magnetic field lines of a given flux density across 

a surface of a given area. We seek to maximize dΦB/dt 

whereupon we make the energy as small as possible, 

equivalently making the entropy, S = -EMF, as large as 

possible. So it is the second law of thermodynamics which 

drives the flux tube processes. So for a given central flux 

density, according to the azimuthal velocity vaz which 

produces this axial field, we seek to maximize the observed 

rate of increase of area with time, (does this ring a bell? It is 

identical to our cinema problem where we seek to extremize 

the subtended angle , and more importantly its rate of 

increase as we follow the propagation vector, r. Equivalently, 

as stated, we are maximizing the entropy and minimizing the 

(Gibbs) Free Energy). Now flux tubes are not straight, they 

are curved. Solar flare flux tubes are semi-circular in 

configuration. (Well, we cannot specify the exact geometry 

from these discussions). Terrestrial flux tubes associated 

with electromagnetic circuits have got to start and finish at 

the one location, the source of the EMF, and therefore must 

have a net circular configuration. In the figure below, the 

helical electron has a component, vax, of its motion, 

identically the field vector dr/dt, whereupon we seek to 

maximize the angle  subtended, and thus extremize the 

entropy according to Faraday’s law.  

 

 

 
Figure 10: The helical fermion has an axial component of 

velocity, vax. The speed vax here defines a curved pathway, r, 

whereupon the rate of change of the angle  is maximized 

 

 

Now for all portions of the flux tube, we seek to maximize 

/r for adjacent portions, x, y → 0. We are only concerned 

with the part of the trajectory infinitely close to a given cross-

section of the flux tube, i.e. the cross-section at a given 

location on the flux tube. We are only concerned with the 

infinities, the description of the trajectory in the limit x, y → 

0. In the vicinity of a given cross-section of the flux tube, we 

seek to extremize the EMF= - dΦB/dt, such that we maximize 
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the observed rate of change of the total flux, that is, as the 

electron observes it in its path r. We are only concerned with 

the solutions of the differential equations we deduced, in the 

limit x, y → 0. The vector, vax, follows the vector, r. 

Now in the twin paradox, applied to the cinema problem, we 

observed for both instantaneous acceleration and zero 

acceleration that d2Δt/dt2 is a constant across the region P → 

T. That constant being zero. That is, the rate at which Δt is 

paid back with time/distance does not vary across the region. 

We seek to make it vary maximally. So somewhere in 

between it is a maximum. We seek to maximize it. What if 

we similarly seek to maximize dΦB/dt in Faraday’s law? In 

other words, back the energy, the EMF = -dΦB/dt as small, 

as negative, as possible. This is equivalent to making the 

entropy, the disorder, as large as possible. Perhaps 

thermodynamics is what drives Solar flare processes? And 

we are identically seeking to minimize dθ/dt in the cinema 

problem. Consider Figure 10 above.  

On the helix, which defines a Solar flare, just like any kind 

of electromagnetic flux tube, if we increase vaz, then we 

decrease vax, because √(vax
2 + vaz

2) = c. Now if there is a 

constant linear density of charge along the helix, then if we 

increase vaz then we increase the internal axial field, Eax. And 

if we reduce vax then we reduce the current Jax associated 

with the helix, propagating dual Maxwellian photons, 

therefore also reduce the current associated with the internal 

charge carriers, weak-strong gauge bosons, so the dissipation 

J.E will presumably be invariant. Now J.E is the electrical 

dissipation, equally Power = VI Js-1 will be invariant. But 

we reduced the current, I, that is, Jax! Therefore, we increase 

the potential, V. So, in conclusion, thermodynamics will be 

satisfied, entropy will be maximized, if vax is reduced as far 

as possible. That is, the physical conditions for the operation 

of a Solar flare flux tube are that its helicity will be 

maximized! And this condition for the operation of the Solar 

flare flux tube will simultaneously be met by the requirement 

that the flux tube is curved. Not a linear flux tube, connecting 

sunspots, that would be akin to a=1, maximal acceleration in 

the twin paradox, and not overly curved, that would be 

approaching a = 0, in the twin paradox, but somewhere, 

optimal, in between these two extremities. Check! Wrong 

about this! See below! 

 

LORENTZ CONTRACTION 

Insofar as increasing the observed angle increases the 

observed area but decreases the observed flux density such 

that the total flux Φ = BA is invariant as the observed 

increase in area with time/distance is maximized, once again, 

special relativity comes to the rescue. There is no way to 

define an electric or magnetic field, unless its flux density in 

the z- and y-directions is the same. Consider the ellipse with 

a flux of B to be maximized. The flux density in the z-

direction is a constant, therefore so too in the y-direction, 

decided by the azimuthal current, which is responsible for 

the axial field, B.  

So in the process of Φ maximization, we have a total flux Φ 

= BA, B invariant but A variable, such that the elliptical area 

A = π ×y×z, for a constant flux density. Consider the y-

variation: the y-variation is at the heart of what separates this 

problem from the standard cinema problem, (x-variation, 

constant y). The velocity in the y-direction brings about a 

Lorentz contraction of field lines B in the x-direction. In the 

z-direction this does not happen. This change of flux in the 

x-direction is associated with variations in y, (Lorentz 

contraction), such that the elliptical area π × y × z is a 

variable of y not z and therefore the magnetic flux must be 

adjusted accordingly such that the flux before and after the 

Φ maximization transformation is unidirectional, i.e. equal, 

in the z- and y-directions. 

 

 
 

Figure 11: The Lorentz contraction of magnetic field lines 

of B 

 

That is, we choose vaxial versus vazimuthal such that this 

happens, |vax + vaz| = c, i.e. the axial flux B has variations 

with y not x in this transformation, such that Baxial is the same 

before and after the transformation. So in the Faraday 

maximization process, the circular cross-section of the flux 

tube becomes an ellipse, A = π ×y×z. In the y-direction, the 

observed field lines Baxial become more spaced apart. To get 

them back into kilter, so that the flux density in the y- and z-

directions is equal, we require the Lorentz contraction. Then 

for the total process, Baxial is a constant but the elliptical area 

expands as above, such that we maximize dΦB/dt. 

 

 

 
 

Figure 12: The axial electron velocity has a component in 

the y-direction, such that a Lorentz contraction of the axial 

magnetic field B occurs 

 

 

So which cross-section of the flux tube are we concerned 

with? Where is our cinema screen? There are cross-sections 

right through the flux tube, from Solar flare foot point to foot 

point, from sunspot (+ve) to sunspot (-ve). We are concerned 

with the cross-section right in the middle of the flux tube, see 

Figure 10.  

Now what is special about the location of this cross-section, 

apart from the fact that it is at the central position of the flux 

tube? It is where the electronic current is equal to the 

positronic current, and where the modulus of the electric 

charge density is equal to the modulus of the positronic 

charge density.  

That is, where the net charge density is equal to zero. In an 

electric circuit, positrons come in at one end, and are 
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extinguished, exactly, by the time they reach the other side. 

Similarly, electrons come from the other side, etc. This is 

how it works: 

 

Electronic current Je 1/2Jtotal 0 

Positronic current 0 1/2Jtotal Jp 

 

And such that the net current, Jtotal = Je + Jp, is a constant 

through the whole circuit. Finally consider Faraday’s law, 

E=-dΦB/dt. According to our analysis, dΦB/dt is to be 

maximized, not minimized, in order that a maximization of 

entropy drives the processes of electromagnetic flux tubes, 

the second law of thermodynamics. Accordingly, the cinema 

problem is associated with a maximization of , not a 

minimization. The cinema problem is at the heart of 

theoretical physics. We seek minimization of dθ/dt. But as 

the fermion approaches the (stationary) cross-section of the 

flux tube, when it gets beyond the critical point, θ is 

decreasing rapidly. Concerning the correlation between dθ/dt 

and dΦB/dt, ΦB = BA, there is nothing we can do about the 

variation of the cross-sectional area A, but at least we can 

limit the variation of the component B, B/t. As the fermion 

approaches the flux tube cross-section, it loses its y-

component of velocity, such that the axial field ceases to 

undergo a Lorentz contraction. So consider the time rate of 

pay-back of time dilation deficit, dΔt/dt, or the spatial rate, 

dΔt/dx, it doesn’t make any difference which, because the 

speed of twin 2, v = -vinit in the region P → T. The rate is a 

constant (maximum) for a = 1, maximum acceleration a = , 

and it is a constant (minimum) for a → 0. So, in between a = 

0 and a = 1, the rate of pay-back varies with displacement x 

across the P→T region. Evidently it decreases with 

displacement, x. So, starting in the middle of the flux tube, 

in consideration of the central cross-section, we seek 

thermodynamic extremism, entropy maximization, in 

accordance with the discussions above. Well, to maximize 

dΔt/dt, or dΔt/dx, you simply go back to point P, right? That 

is, the electric potential between the central cross-section 

position, [e+] = [e-], Je = Jp = ½Jtotal, total charge density  = 

0, and a point somewhere in the flux tube, is extremized if 

you take that position in the flux tube all the way back to the 

sunspot. The positive sunspot, (protons), or the negative 

sunspot, (electrons), it doesn’t matter which, we are just 

concerned with the modulus of the difference in potential 

between the central cross-section and the origin of the flux 

tube, the foot point, the sunspot.  

Now we are in a position to make a telling statement about 

the twin paradox of Solar flares, specifically, the nature of 

the acceleration of twin 2, a=0, no reversal, no re-union, 

versus a=1, instantaneous reversal, re-union as soon as 

possible, and somewhere in between, which satisfies the 

thermodynamic extremism, and which describes the manner 

of operation of the Solar flare flux tube. In particular, you 

take two sunspots, one positive magnetic charge, and one 

negative magnetic charge. And you take a point somewhere 

in between, in fact at the central position of the flux tube, Je 

= Jp, and you do a calculation of the force owing to these two 

clumps of charge, F= (1/4) (q1q2/R2), or the potential V= 

(1/4)(q1q2/R). And you find you have a description of the 

moment in time that the flux tube is activated, that current 

starts to flow between the foot points. (James Russell 

Farmer, Physics honors Solar Flares project, 1998). But it is 

not clear whether this calculation describes a loop, as we 

know from observations is the manner of a solar flare flux 

tube, or a linear flux tube. It would appear to be the latter, in 

the absence of our cinema investigations. After I gave my 

honors talk to the Department of Theoretical physics, one 

academic, in fact the one who suggested I do physics honors 

after I went to show him some of my independent research, 

Chemical Physics, was trying to get his head around this. He 

couldn’t see how it could be a loop. He was obsessed with 

proposition (b) in Figure 13 below.  

 

 
 

Figure 13: There are three possibilities for Solar flare flux 

tubes, in consideration of the acceleration problem in the 

twin paradox, (a), (b) and (c). 

 

 

Firstly, you have (a), acceleration a=0, linear flux tube 

connecting Solar flare foot points by the most direct path. 

You never get to the shaded cross-section of the loop in 

question. The twin never gets to the re-union with his 

brother. No loop, just a linear electromagnetic flux tube, 

which cannot operate, due to the density of plasma at the 

radial position of the sunspot. A loop takes the propagation 

of the fermion out of this high-density plasma region, the 

Solar flare foot point occurs at the boundary between the 

high and low plasma densities. Then (b), again a linear flux 

tube, but this time connecting to the cross-section of the loop 

in question. Because you get straight lines and not curved 

lines, this corresponds to a = 1, infinite acceleration, in the 

twin paradox. Finally, (c), this is the observed operation of 

the Solar flare flux tube. It is somewhere between (a) and (b), 

and the exact nature of this interim position is afforded by 

thermodynamic extremism, the maximization of entropy. 

Finally, our electromagnetic flux tube is in the shape of a 

loop, it is no longer linear. And now, we know the reason for 

the existence of Solar flares!  

 

LAPLACE’S EQUATION 

Consider Figure 12 above. In respect of Lorentz contraction 

of the axial field lines, Bax, through the center of the flux 

tube, we are concerned with the vanishing of the velocity 

component vy of vax. That velocity affects the spacing of the 

field lines through the center of the flux tube, in the y-

direction, by Lorentz contraction. But we have to deal also 

with their spacing in the z-direction. Well, in the limit vy → 

0, vax = vx, you have, effectively, a linear electromagnetic 
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flux tube. You forget all about the fact that it is shaped in a 

loop fashion. But even a linear flux tube is a three-

dimensional entity, not two, so we expect a Laplacian in 

three dimensions, not two. So we bring z-variations into it. 

In the limit vy → 0, there is nothing to distinguish between 

the y- and the z-direction, they are equivalent, but the x-

direction is something different altogether.  

So what we said for the spacing of the axial field lines in the 

y-direction, we can say similarly for the z-direction. That is, 

if the spacing of the axial field lines, Bax, decreases due to 

Doppler shift in the y-direction, it does so similarly in the z-

direction. y- and z- are equivalent, if you say something 

about one of them, it applies simultaneously to the other.  

In particular, if, in the cinema problem, we have 2θ/y2 = 0, 

then simultaneously we have 2θ/z2 = 0. And because y- and 

z- are entirely independent, orthogonal, (see below), then 

you have each of these independently to zero, a special case 

of the Laplacian 2θ/x2 + 2θ/y2 = 0. There is no 

interrelation between y- and z-. Now what about the x-

component of the Laplacian? Laplace’s equation is: 2V = 

0, or, 

 

(
𝜕2

𝜕𝑥2 + 
𝜕2

𝜕𝑦2 + 
𝜕2

𝜕𝑧2)𝑉 = 0      (43) 

 

(2 is the Laplacian). We seek to put each of the three terms 

to zero, we have done that already for y- and z-. The first 

thing to address is that we are assuming the angle, θ, is 

representative of an electrical potential, V. Well, θ, which we 

have sought to maximize, represents an effective diameter of 

the flux tube. So it is representative of the magnetic flux, ΦB 

= BA, but for a constant flux density Bax. Well, that constant 

flux density is wrought by our electromagnetic analysis 

above, whereupon we insisted on a constant linear spacing of 

fermions on the helix. And the azimuthal component of the 

velocity of these fermions on the helix gives rise to the 

central, axial field, B. So θ does indeed give rise to an 

electrical potential, V.  

Because of Faraday’s law, V=EMF=-dΦB/dt. And this 

potential V is to be extremized, in exactly the manner that θ 

was extremized, in our cinema problem. What’s more, the 

helix itself occurs in consequence of the extremization of the 

4-vector (ct, x), which arises from Einstein’s special 

relativity, which arises from electromagnetism. (Einstein’s 

paper was called On the electrodynamics of moving bodies).  

But we need a time derivative of this flux, to make it a 

potential, which we certainly do have, because we are in fact 

in pursuit of extremizing dΔt/dt, or dΔt/dx, see below. That 

is, we have dΔt/dt = constant across region P → T, for a = 0, 

1, such that we seek to extremize it, dΔt/dt variable = 

dΔt/dt(x) to be maximized, somewhere in between, and we 

have our Laplacian, in Laplace’s equation, in correlation 

with a time derivative, which describes the operational 

condition of the solar flux tube, which operates exclusively 

at this set of parameters, dependent only on the quantity of 

charge stored at the most charged foot point and the distance 

between the two foot points, in contrast to a terrestrial 

electromagnetic circuit, whose operational condition is 

completely arbitrary. You can choose whatever voltage, 

resistance and current you like, in the terrestrial 

circumstance. Or, you can say dΔt/dt(t) becomes a variable, 

which we seek to extremize, d2Δt/dt2 = 0, as above. And it all 

holds together because we seek to extremize EMF, that is, V 

= - dΦB/dt, and in so doing we achieve thermodynamic 

extremism, of the entropy. Bringing us to our final 

conclusion, since the y- and z- components of the Laplacian 

go independently to zero, then so does the x-component, 

2V/x2 = 0, to satisfy the three-dimensional Laplacian, in 

Laplace’s equation (43) above.  

And, you will recall, we went to enormous lengths, in our 

discussion of the cinema problem, to confirm 2/x2 = 0. 

Introducing a new mathematical theorem to build on 

l’Hôpital’s rule, no less, whereupon some absolutely crazy 

conclusions can be made about what quantum field theorists 

have been doing with their renormalization, and about the 

role of infinities in physics. 

 

WHAT IS THE MEANING OF ACCELERATION A = 

1 = ? THE TWIN PARADOX 

So, in our analysis of the twin paradox, we instituted an 

infinite acceleration designated by a = 0/0 = 1. The reason 

being, for it, that it was the only way to get a simple, 

meaningful physical result out of something that was 

seemingly too complicated otherwise. So how do you arrive 

at this? For comparison, in QTE, we proposed that the mass 

of an electron as it is accelerated to the speed of light, 

becoming a photon, is m = mo/√(1 – v2/c2) → 0/0 = me, as v 

→ c and mo: me → 0.  

It was just a proposition that held the promise of getting some 

useful physics. It wasn’t until much later that it occurred to 

us, well we know the rate at which the Lorentz factor √(1 – 

v2/c2) goes to zero as v → c.  

Well, if we knew the rate at which the rest mass mo went to 

zero as v → c, then we could confirm our designation of the 

mass of the photon having been activated from the zero-

velocity frame of a massive electron/positron is me, such that 

the mass of a photon in the naked Reverse Higgs process is 

me, and the frequency of such a photon is given by: he = 

mec2. And presto, we have that mo(v) variation, it is given by:  

 

E2 = (pc)2 + (moc2)2 

 

 

= [
𝑚0𝑣

√1− 
𝑣2

𝑐2

 ×  𝑐]2 + (𝑚0𝑐
2)2    (44) 

 

whereupon you make mo the subject, putting the two mo 

terms together, to get mo(v), and subsequently evaluate the 

photon mass: 

 

𝑚(𝑝ℎ𝑜𝑡𝑜𝑛) =  
𝑚0(𝑣)

√1− 
𝑣2

𝑐2

 ,     (45) 

 

and E = h = mec2, and you find m(photon) = me, in the limit 

v → c. Very simple, very profound. So, can we do a similar 

sort of thing for the twin paradox, a = 0/0 = 1 = ?  

In consideration of Figure 9, above. For a smaller 

acceleration, a → 0, we have a higher gradient at the start of 

the P → T trajectory. That is, from the point in space where 

the acceleration begins, whether it be instantaneous reversal 

or whether it be non-infinite acceleration, whereupon twin 2 
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has to travel some distance into the negative displacement 

region, before reversing and returning to point P, to complete 

his journey, ultimately, at v= -vinit.  

Whatever the acceleration, however large the journey into 

negative displacement journey, the final part of the journey, 

P → Q, is achieved at velocity v= -vinit, but nevertheless the 

entire trajectory, including the negative displacement part of 

it, is described by the trajectories in Figure 9. Three of them. 

a = 1 (= ), a → 0, (dashed line), and something in between. 

Now the rate of time dilation payback, dΔt/dt, is represented 

by the abstract velocity, v.  

If it is absolutely vertical, (in the y-direction), it never gets 

off this trajectory, twin 2 never rendezvous with twin 1, and 

furthermore, the speed v along the trajectory is zero. This is 

as opposed to a horizontal trajectory, i.e. entirely in the x-

direction, the abstract speed v = , the rate of payback Δt/dt 

is a minimum, in fact it is zero. Perhaps we should be in 

consideration of a displacement payback, dΔt/dx, because 

then the rate, for a → 0, is zero, because v = 0. And if for a 

≠ 0, but a → 0, at the rendezvous point, the trajectory is 

approaching horizontal, the rate of payback near the 

rendezvous point is approaching zero. So we start out in 

some intermediate trajectory, 0 < a < 1.  

In the case of Solar flares, there will be a one preferred 

trajectory out of an infinite number of trajectories in this 

region. That trajectory will be the manner in which the 

thermodynamics are extremized, and it corresponds to the 

helicity of the flux tube being maximized, yet not reaching 

infinity, not achieving vax = 0, vaz = c. There is some factor 

which we have not yet ascertained which brings the helicity 

to a maximum before that happens. In fact, a considerable 

time before that happens, as we observe the Solar flare 

helicity in magnetograms, and it is a long way from infinite 

helicity.  

For starters, the dimension of a Solar flare is enormous, and 

secondly, we are far removed from the case of terrestrial 

electromagnetic flux tubes, whereupon the helix is wound up 

so tightly that we do not observe anything other than Baz. And 

this fact has been a thorn in the side of terrestrial 

electromagnetic theorists, it has prevented them from 

appreciating that electromagnetic circuits are a special case 

of the more general electromagnetic helix.  

All Maxwell’s equations are telling us is that the integral 

around an azimuthal field line is in proportion to the current 

it encloses, such that the magnitude of these azimuthal field 

lines Baz is inversely in proportion to distance from an axial 

current, and there is nothing, either experimentally or 

theoretically, to indicate these magnetic fields could have an 

axial component. 

 

 

 
 

Figure 14: We start out, (a), with a = 0, a vertical trajectory. 

It doesn’t even get onto the dashed line, the low acceleration 

limit, a → 0. And it is stationary in this abstract space, v = 0.  

Now you give acceleration an increment of nonzero 

acceleration. You rotate that vertical vector representing a = 

0 by a certain amount, as in (b) 

 

 

So, institute a reversal, nonzero acceleration, then the twin 2 

vector achieves a horizontal component. (pure horizontal 

would represent v = , in this abstract space, see discussions 

above). If we go all the way to a = 1 = ∞, then we rotate the 

acceleration vector all the way until it is connecting P 

linearly to the rendezvous point, point T. So, as shown in 

Figure 14, as you increase a from zero towards a = 1 = , 

you in fact rotate the a = 0 vector, such that it is no longer 

strictly vertical. Trajectories along this a = 0 vector are still 

vanishing in terms of the abstract velocity v. But that occurs 

only at the origin. As soon as you get past t = 0, you get off 

this linear trajectory, however infinitesimally, and v 

continues to increase from there. Twin 2 travels to his 

destination, his rendezvous with twin 1. At ever decreasing 

rates of dΔt/dt pay-back, as the gradient of his trajectory 

decreases. As a → 0, the payback dΔt/dt approaches zero as 

the journey comes to its conclusion. Or perhaps approaches 

a nonzero minimum in line with some handling of zeroes and 

infinities that we have not completely grasped at this point. 

As a → 1 = , we approach a constant rate of payback with 

time/distance, dΔt/dx, or dΔt/dt → constant in the trajectory 

P → T.  

So, let’s start at a = 0, vertical acceleration vector. Rotate this 

a = 0 vector all the way until this vector connects linearly to 

destination, rendezvous point, that is, a description of the 

journey a = 1 = . So you have two vectors, superimposed. 

One represents infinite acceleration, the other represents zero 

acceleration. And they are both super-imposed! The vector 

is both zero and infinity! So what do you do? You multiply 

it by itself! The magnitude, squared, of this vector is: 

 

0 ×  = 1!       (46) 

 

So, all by itself, it satisfies the normalization condition. In 

quantum mechanics, one normalizes wavefunctions, so that 

their integral over all space is: 

 

ψ1*ψ1 d = 1.     (47) 

 

In this manner, there is a probability that an electron will be 

located somewhere in space, the integral is over all space. 

The wavefunction is normalized. If you introduce a second 

electron, say in a secondary Schrodinger orbit, then similarly 

this second electron, whose wavefunction we designate ψ2, 

will also be normalized. And the net overlap, the net 

interaction between the two electrons, is: 

 

ψ1*ψ2 d = 0.      (48) 

 

The two wavefunctions, corresponding to the two electrons, 

are said to be orthogonal, constituting no net interaction. So 

when you employ the Schrodinger equation, for multiple 

electron atoms, the electromagnetic potential is just a radial 

function of the nuclear charge, V = (1/4) × qe
2Z/R, where 

Z is the nuclear charge. You do not have to include electron-
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electron repulsion in the potential term V, which becomes 

V(R), since there is no net interaction between any two 

electrons. They are orthogonal! Physicists and chemists have 

tried to do this, account for electron-electron repulsion. They 

have come up with nothing more than approximations, and 

they have been barking up entirely the wrong tree. 

Now orthogonality of wavefunctions, such that they are what 

we call orthonormal, that is, orthogonal to one another and 

normalized, has a direct correspondence with ordinary 

vectors in Cartesian space. A vector x in the x-direction, and 

a vector y in the y-direction, and a vector z in the z-direction, 

are all orthogonal to one another, that is, their dot product 

among themselves is zero: 

 

x . y = 0, x . z = 0,  and,  y . z = 0     (49) 

 

Further, if we choose to make them orthonormal, then their 

magnitudes are 1, just as in the case of Schrodinger 

wavefunctions: 

 

x . x = y . y = z . z = 1.     (50) 

 

That is, unit vectors. So, finally, we have a reason for the fact 

that the vector we have designated as a =  in fact has a 

length of one, that is, infinite acceleration is designated as a 

= 1, in the twin paradox, and in the cinema elevation 

problem, and in Solar flares. Finally, we investigate this 

somewhat perplexing matter of a = 1 = infinity with reference 

to gravitational considerations, since we are in the business 

of unifying special and general relativity into ultimate theory 

of relativity, whereupon we cater for accelerations not just of 

a gravitational nature, such that general relativity just 

becomes a special case of accelerations in general. One 

cannot go too far in attempting to justify a = 1 = infinity. 

   

 

THE TWIN PARADOX – INSTANTANEOUS 

REVERSAL/INFINITE ACCELERATION IN THE 

REALM OF GRAVITATION 

So we have, in the Aether theory of the twin paradox, the 

unification of special and general relativity, that twin 2, the 

accelerating twin, undergoes an instantaneous velocity 

reversal, after time = t, of, 𝑎 = 0/0 = 1 = infinity. So in what 

manner does a = 1 signify an infinite acceleration? Well, 

consider zero acceleration, a = 0. Then: 

 

0 ×  = 1       (51) 

 

So with regard to zero acceleration, a = 1 signifies an infinite 

increase in acceleration, from a = 0. Most particularly, the 

acceleration of twin 2 doesn’t have a meaning, except with 

regard to the inertial phase, a = 0. Without the inertial phase, 

a = 0, F(a) doesn’t even come into consideration. That is as 

opposed to an arbitrary Newtonian acceleration, where the 

inertial frame does not necessarily come into consideration. 

In applying Newton’s law, F = ma, we are only concerned 

with the acceleration, there is no reference to any inertial 

phase which came before the acceleration. Similarly in 

General Relativity, consider a clock stationary in a 

gravitational field. This is equivalent to the accelerating twin 

2 in the twin paradox. The clock is ticking at a certain rate, 

but this is meaningless unless referred to another frame, an 

inertial frame. That is, it is meaningless unless referred to a 

frame outside that gravitational field, or in free fall in that 

gravitational field, at that same location. So: 

 

0 ×  ∞ = 𝑎 =  
𝐺𝑀

𝑅2        (52) 

 

by analogy with what happens in the twin paradox. It is not 

a = 1, it is a = GM/R2, but that is a trivial matter. What is not 

a trivial matter is the fact that this does not signify an infinite 

acceleration! What is different about this case from the case 

of the twin paradox? Consider the gravitational inertia frame, 

the frame where a body is in free fall, at that location. This is 

equivalent to the non-accelerating phase of twin 2, the 

outward journey at velocity v, for time t. But what is the 

speed in the gravitational inertial frame, to correlate with 

twin 2 moving at vinit on the outward journey? It is undefined! 

There you have it, that is what separates the two cases, the 

twin paradox versus the case of General Relativity. In the 

twin paradox case, an infinite acceleration is made possible 

by the fact that in the inertial frame, the velocity is defined. 

The instantaneous reversal of twin 2 is a reflection of the fact 

that velocity is defined in the inertial frame!  

That is, we have seen that for 0 ×  = 0/0 = K, the value of 

K is dependent upon the relative rates at which the numerator 

versus the denominator go to zero. Well, in the case of the 

twin paradox, since we know Δv = 2v, then we can work out 

the rate that the acceleration goes to infinity, upon 

instantaneous reversal. It depends upon the value v = |vinit|. 

Such a thing is not possible in the general relativistic 

equivalent. That is why 0/0 = GM/R2 cannot signify an 

instantaneous reversal, an infinite acceleration, in the general 

relativistic case. 

 

DISCUSSION 

Really it has been a matter of un-fathomed fortune that our 

investigations of the cinema viewing problem, undertaken 

just as a matter if curiosity at moments that could otherwise 

have been idle has progressed into a fully-fledged theory of 

Solar flares and in accompaniment with a new area of 

physics which we dub the Ultimate Theory of Relativity. 

Again, an extreme matter of fortune that I was contacted by 

Muhammad Aslam Musakhail, requesting that I work on his 

Closed fluid dynamic principle with him. Without that, it 

would not have been possible to fully solve the twin paradox, 

it would have been impossible to propose an Ultimate 

Theory of Relativity, and it would not have been possible to 

bring my investigations of Solar Flares to a satisfactory 

conclusion. The mathematics of the cinema viewing 

maximization problem only involves straightforward 

differentiation, but nevertheless is quite intricate, and to 

make something physical out of them, the only possibility 

was to simplify using infinities. Exactly the same as for our 

twin paradox investigations in Theory of Everything. And lo 

and behold, the two infinity investigations came together. 

The twin paradox will henceforth, eternally, be a measure of 

a new area of physics, the unification of Einstein’s special 

and general relativities, Ultimate Relativity, and in 

connection with Muhammad’s Aether theory, and, to boot, 
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this Aether dynamic lies at the basis of the dynamics of Solar 

flares. Physicists currently know nothing, theoretically, 

worth speaking about, with regards to Solar flares. Solar 

flares are not currently understood is the sort of comment you 

are likely to find in the literature. The reason for this is that 

they do not understand about something we have been 

investigating for a long, long time, decades, in fact. And that 

is, the electromagnetic flux tube. Physicists do not 

understand that such a thing exists, by the fundamental laws 

of physics, and that a terrestrial electromagnetic circuit is one 

version of it, and a Solar flare loop is another example of it. 

The helical configuration of a magnetic field comes into 

existence according to the existence of what are known as 4-

vectors. But you have to extremize 4-vectors, in the same 

way we extremized our viewing angle in the cinema 

problem, and in the manner we extremized the 

thermodynamic entropy to put the solar flare firmly into the 

realm of Ultimate Relativity. And physicists have not done 

this. Perhaps the reason why they have not been inspired to 

do this is that the surface helix magnetic lines of a terrestrial 

current are so immensely tightly wound that there is no 

manner, theoretically or experimentally, to observe any axial 

component. Physicists are laboring under the mis-

apprehension that the magnetic field lines around a current 

are entirely azimuthal, (they close in upon themselves), and 

this is hugely stalling their progress, they do not see the helix, 

therefore they do not see the electromagnetic flux tube. 

Ironically, they do see the helix in observations of solar 

flares, with magnetograms, but because they have not got 

their thinking caps on about matters of terrestrial 

electromagnetism, they do not see the connection. About the 

only useful thing physicists are doing with respect to Solar 

flare theory is investigating the nature of magnetic 

reconnection, and in the words of Bob Dylan, a train-load of 

them bogged down in a magnetic field. We have made some 

interesting conclusions about magnetic re-reconnection, and 

that will appear in the PhD thesis, and the topic did not go 

un-mentioned in the honors project, 1998. Well, it’s ironic 

that they are investigating magnetic reconnection when the 

mistake they are making is in the proposition that the 

azimuthal field lines, B, in electrical circuits connect to 

themselves, when in fact they do no such thing, they are a 

continuous, helical entity, extending from one end of the 

conductor to the other. 

Myself, I have been led to these conclusions owing to a 

number of factors. My MSc studies in quantum field theory, 

string theory, and supersymmetry. My MSc dissertation in 

M-theory, and the opportunity Muhammad has given me to 

work on his Aether dynamic principle. Finally, on the matter 

of my net tertiary studies. They can kick me out of a PhD, 

put on hold my progression as a research physicist, but they 

cannot stall my progress to glory. In the absence of an 

opportunity to do research in an official physics department, 

I occupied myself with further coursework studies, 

culminating in five coursework degrees, two BSc degrees, 

one masters in science, one masters in agriculture plus 

diploma in sustainable horticulture, (Unitec, Auckland). And 

additionally occupied my time with personal research 

endeavors. Such that by the time I finished my coursework 

studies, 2019, my research mind was razor-sharp like 

possibly no mind ever was, such was the misfortune that fell 

upon me with my PhD expulsion at the end of 2005, an 

academic misfortune and the path to digging oneself out of it 

having probably been unrivalled before, or since, or ever.  

 

CONCLUSION 

If there is one thing in this paper that stands out as something 

that was worth investigating, and has been successfully 

investigated, it is the assertion, in the twin paradox analysis, 

that infinite acceleration, instantaneous trajectory reversal, 

can be represented mathematically by a = 1. This proposition 

was the only way out of quite considerable mathematical 

difficulties in the twin paradox theory put forward in Theory 

of Everything. Similarly, certain conclusions about infinities, 

culminating in no less than a new mathematical theorem, 

provided a way out of some difficult mathematical matters in 

this paper, On the Aether dynamics, Twin Paradox and 

Ultimate Relativity of Solar Flares. It was a most pleasing 

matter to be able to propose a new theorem not in physics but 

in mathematics! And finally, to stumble onto the meaning of 

a = 1 =  in the twin paradox, after investigations that served 

to link the twin paradox to matters of Solar flares, via the 

cinema extremization problem, well that was something 

really special!  Finally, the entire premise of the paper came 

to a conclusion insofar as the realization was made that the 

paper, ultimately, is in consideration of Laplace’s law of 

electromagnetism.  
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