

HyperScience International Journal

Original Research Papers Open Access Journals ISSN: 2821-3300

HIJ, Vol 5, No 3, pp 51-62, Sept 2025 https://doi.org/10.55672/hij2025pp51-62 J.R.Farmer

A Gravitational-Aether Model Accounting for the Extreme Heat of Venus

Muhammad Aslam Musakhail Independent Researcher, Pakistan aslammusakhail@gmail.com

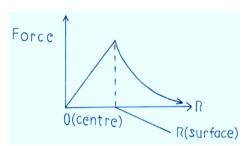
James Russell Farmer * 🕒

Independent Researcher, 10 William Ave, Greenlane, Auckland 1051, New Zealand jrfarmer12@yahoo.com.au

ABSTRACT

This study presents a theoretical framework of gravitational-aether dynamics to explain the anomalously high surface temperature of Venus. The model links planetary rotation rate to an internal coupling between gravitational and electromagnetic fields, suggesting that slow rotation reduces outward energy dissipation and increases internal heat retention. A potential-based formulation is developed, combining an inner harmonic potential (valid inside a uniform-density sphere) and an outer hyperbolic potential (applicable beyond the surface). The transition between these regimes defines a differentiable "potential well" that corresponds to the region of maximum gravitational time dilation and energy concentration. By extending this framework thermodynamically, the minimization of gravitational potential is shown to correspond to entropy maximization, connecting planetary rotation, aether dynamics, and heat equilibrium. The results suggest that Venus's extreme surface temperature may arise naturally from this aether-mediated force unification, offering an alternative interpretation to purely radiative or greenhouse explanations.

Keywords: gravitational aether dynamics, force unification, planetary thermodynamics, Venus's rotation


©2025 The Authors, Published by Hyperscience International Journal. This is an open-access article under the CC BY-NC https://creativecommons.org/licenses/by-nc/4.0/

INTRODUCTION

We consider a stationary clock situated in a gravitational field. The stronger the field, the slower the clock's rate. In other words, it is the field strength not the absolute value of the potential that governs gravitational time dilation. For $R: R_{\text{surface}} \to 0$, the outside contribution to the local field vanishes by the inverse-square law (shell theorem), so only the mass beneath the observer contributes to the net gravitational field. Thus one "counts" the mass under one's feet, not the mass overhead.

The field tends to zero as $R \to 0$ and as $R \to \infty$. Inside an approximately uniform-density interior, g(R) increases roughly linearly with R; outside the body, $g(R) \propto 1/R^2$. The schematic highlights that the local field (not the arbitrary zero of potential) controls gravitational time dilation.

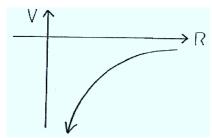
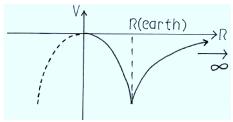

Since Force(R = 0)=Force $(R \rightarrow \infty) = 0$, it is useful to analyses the potential V(R) in order to clarify why gravitational time dilation is often associated with the potential profile while remaining physically controlled by $F = \nabla V$.

Figure 1. Radial behavior of the gravitational field g(R) for a spherically symmetric body.

Empirically and theoretically, stronger gravity correlates with larger gravitational time dilation; yet gravity vanishes at R=0. Claims that the maximum time dilation should occur at a potential minimum (e.g., at the center) must therefore be scrutinized carefully: at R=0 the net field is zero, which argues against a maximal dilation there. Nevertheless, to interrogate this claim rigorously, we examine the potential-based description alongside the field-based one.

Consider first a "very small Earth," i.e., an idealized case in which one may descend to very low V from above without immediately encountering the surface. In this regime the exterior form $V(R) \propto 1/R$ can become very steep before the surface is reached, which explains why the centripetal acceleration at the surface, $A_c = v^2/R$, can be significant even when the rotation speed v appears small because R is comparatively small.


Figure 2. Common misconception arising from extending the exterior potential $V(R) \propto 1/R$ beneath the surface.

If one (incorrectly) assumes $V(R) \propto 1/R$ for $R < R_{\text{surface}}$, the curve would continue to decrease monotonically toward R = 0, suggesting a "bottom" of the potential well at the centre. This extension is invalid: the exterior form does not apply inside the mass distribution, where the interior potential departs from $\propto 1/R$ and the net field approaches zero at R = 0. Accordingly, once the surface is reached the exterior law for V(R) cannot continue unchanged into the interior.

The nature of the force changes across the boundary, and so does the potential. There is no physically justified scenario in which a single exterior-type potential well simply deepens to a unique minimum at R=0 and then reverses; instead, the interior behaves differently, and any valid description must reflect that transition rather than impose a single, simplistic well centred at R=0.

METHODOLOGY

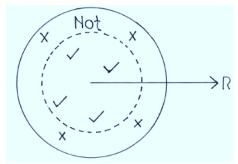
The potential follows the usual exterior form $V = -\frac{GM}{R}$ down to the planetary surface $R = R_{\oplus}$.

Figure 3. Schematic potential profile relevant to the present analysis.

Inside the planet, where the gravitational force vanishes at R = 0, the potential must return upward toward V = 0, consistent with the fact that V = 0 both at infinity and at the center, where the force also vanishes.

The potential profile described in Figure 3 defines the basis for the gravitational—aether model. The corresponding force can be recovered from it through the gradient relation

$$F = \nabla V \tag{1}$$


Both V and F vanish at the limits R = 0 and $R = \infty$. Moreover, since the gravitational force is zero at the center of the Earth,

$$\frac{dV}{dR} = 0 \quad \text{at} \quad R = 0 \tag{2}$$

In the interior domain $R \in [-R_{\oplus}, +R_{\oplus}]$, the potential V(R) exhibits an **inverted parabolic** profile. This functional form satisfies the boundary condition in equation (2) and is characteristic of a **simple harmonic potential** between the surface and the center of the Earth. The parabolic potential naturally represents the **simple harmonic motion (SHM)** that arises from a linear restoring force:

$$F = -kx \tag{3}$$

To visualize this concept, imagine a narrow, frictionless tunnel drilled through the Earth along a diameter. If a test mass were dropped into the tunnel, it would undergo **simple harmonic oscillation** between the two opposing surfaces. The velocity would be maximum at the center and zero at the outer boundaries $R = \pm R_{\oplus}$. This classical thought experiment demonstrates that a harmonic potential accurately represents the gravitational behavior inside a uniform spherical mass.

Figure 4. Behavior of the gravitational force inside a spherically symmetric mass distribution.

Although gravity follows an inverse-square law externally, the **net force** within the interior is zero at the exact center, F = 0. One counts only the mass below one's feet (enclosed mass M(R)), ignoring the mass above. The figure emphasizes that F = 0 while gravitational time dilation remains associated with the nonzero energy density of the field.

At a position $0 < R < R_{\text{surface}}$, the gravitational field is due solely to the mass enclosed within radius R. The magnitude of the local gravitational acceleration is therefore given by

$$g(R) = \frac{GM(R)}{R^2} \tag{4}$$

where,

$$M(R) = \frac{4}{3}\pi\rho R^3 \tag{5}$$

Substituting equation (5) into equation (4) yields the linear interior field

$$g(R) = \frac{4}{3}\pi G \rho R \tag{6}$$

confirming that g(R) increases proportionally with radius and vanishes at the center, as depicted in Figure 4.

The total mass enclosed within a sphere of radius R can be expressed as

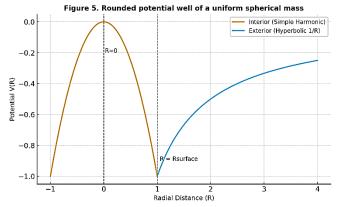
$$M = \alpha R^3 \tag{7}$$

where

$$\alpha = \frac{4}{3}\pi\rho \tag{8}$$

and ρ is the (assumed constant) mean density of the planet. The corresponding gravitational field magnitude is then

$$g(R) = \frac{G\alpha R^3}{R^2} = G\alpha R \propto R \tag{9}$$


This confirms that the force follows a linear law consistent with a simple harmonic potential, i.e.,

$$F = -k x \tag{10}$$

and hence the potential V(R) between $R = \pm R_{\text{surface}}$ assumes a parabolic profile. At the center (R = 0),

$$\frac{dV}{dR} = 0 \tag{11}$$

and therefore, the gravitational force is exactly zero there. This distinction is important: "zero gravitational force" (F=0) is physically different from the algebraic statement $\sum F=0$; the former implies no local gravitational acceleration, not merely balanced components.

Figure 5. Potential and force distribution across the interior and exterior of a uniform spherical mass.

The potential V(R) is parabolic inside $(R < R_{\text{surface}})$ and transitions to the inverse form V = -GM/R outside $(R > R_{\text{surface}})$. The slope dV/dR (hence the force F) vanishes at R = 0 and $R \to \infty$, while attaining maximum magnitude near the

planetary surface. A conceptual question naturally arises: where does the actual potential well occur?

Inspection of Figure 5 indicates that if any well exists, it is located near $R = R_{\oplus}$, not at the center. Indeed, at R = 0 the potential exhibits a maximum, not a minimum.

The simple harmonic potential in Figure 5 is such that the gradient F = dV/dR reaches its largest absolute value at $R = R_{\oplus}$.

However, differentiability at that boundary becomes subtle because dV/dR approaches infinity on either side of $R=R_{\oplus}$. To establish a smooth and differentiable potential well, the analysis introduces asymptotic limits at the surface. Approaching the boundary from below and above gives

$$\lim_{R \to R} V(R) \to -\infty \qquad \lim_{R \to R} V(R) \to +\infty \qquad (12)$$

Therefore, the total force at the surface can be expressed schematically as

$$F(R_{\text{surface}}) = \lim_{R \to R_{\text{surface}}} F(R) + \lim_{R \to R_{\text{surface}}} F(R)$$
$$= (-\infty) + (+\infty) = \infty - \infty$$
(13)

From a mathematical perspective, such an indeterminate expression $(\infty - \infty)$ may correspond to a limiting value of zero, infinity, or a finite constant, depending on the relative rates of divergence. Physically, this balance yields the standard Newtonian surface force:

$$F(R_{\text{surface}}) = \frac{GMm}{R_{\text{surface}}^2}$$
 (14)

When the radius exceeds the boundary of mass distribution $(R > R_{\text{surface}})$, the density ρ is effectively zero and the system transitions from a purely gravitational domain to a region governed by coupled gravitational—electromagnetic dynamics. In this exterior regime, the relevant interaction is expressed in terms of the four-vector invariant

$$I \cdot E = |E \times B| \tag{15}$$

which signifies equilibrium between internal energy conversion $(J \cdot E)$ and radiative flux $(E \times B)$. Inside the body $(R < R_{\text{surface}})$, the $J \cdot E$ term represents internal processes occurring along magnetic or gravitational flux tubes, predominantly axial in geometry. At the surface $(R < R_{\text{surface}})$, these processes become helical (axial + azimuthal), while beyond the surface $(R > R_{\text{surface}})$ radiation is emitted outward through $E \times B$.

This analogy parallels the electromagnetic behavior of a conducting sphere, where $J \cdot E$ dominates within the conductor and $E \times B$ represents the radiative emission outside. Continuing the analysis, we now apply the principle of extremization of the four-vector $(J \cdot E, E \times B)$.

From this principle, the magnitude of the gravitational force is determined by the modulus of the potential gradient,

$$F = \left| \frac{dV}{dR} \right| \tag{16}$$

This formulation ensures that the force is directed correctly, regardless of the sign of dV/dR. Inspection of Figure 3 shows that the derivative dV/dR has opposite signs on either side of the planetary surface: for $R > R_{\rm surface}$ it is negative, while for $R < R_{\rm surface}$ it is positive.

However, the physical force vectors on both sides point toward the center, i.e., in the same spatial direction. Taking the modulus of the derivative thus resolves this apparent contradiction and aligns the mathematical formulation with physical reality.

The extremization of the four-vector $(J \cdot E, E \times B)$ therefore plays a crucial conceptual role it provides a consistent criterion for determining the correct direction and magnitude of the force in both interior and exterior regions. Without this unifying condition, the change of sign in dV/dR across the surface would lead to ambiguous or even contradictory physical interpretations.

In summary, within the electromagnetic analogy, the term $J \cdot E$ corresponds to the internal electrical power density associated with current flow inside a conductor (where $J \neq 0$), while the term $(E \times B)$ represents the radiative power flux that exists outside the region of current density, i.e., at or beyond the conductor's surface.

By direct analogy, in the gravitational domain, outside the region of mass density ρ , we are concerned not with the signed derivative dV/dR, but with its absolute value,

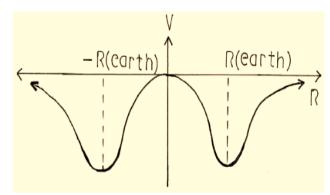
$$F(R > R_{\text{surface}}) = \left| \frac{dV}{dR} \right| \tag{17}$$

ensuring continuity of force magnitude and physical direction across the boundary between interior and exterior gravitational fields. The term $\mid E \times B \mid$ represents the external radiative component that arises from an internal energy dissipation process characterized by

$$J \cdot E = Force \times velocity \tag{18}$$

This correspondence establishes a duality between mechanical and electromagnetic descriptions:

Force
$$\Leftrightarrow |E \times B|$$
 (19)


In essence, the external radiative field $| E \times B |$ is the macroscopic manifestation of the microscopic work performed by internal dissipative forces. The equality between these two representations unifies the mechanical and electromagnetic viewpoints under the same energetic principle.

In conclusion, by examining the limits near the surface $(R = R_{\text{surface}})$ where divergent gradients $(\pm \infty)$ occur we find that the potential well can be smoothly "rounded off."

This rounding procedure ensures both differentiability and physical continuity of the gravitational potential.

Through this process, the potential acquires a finite and physically meaningful depth, avoiding discontinuities or singularities at the boundary.

Such a modification provides a coherent mathematical representation consistent with the physical expectation that gravitational fields vary smoothly across material interfaces.

Figure 6. Rounded simple harmonic potential around the planetary surface.

Within the interval $(-R_{\rm surface} < R < R_{\rm surface})$ the potential V(R) retains its parabolic (simple harmonic) form, while in the vicinity of $(R = \pm R_{\rm surface})$ it is rounded off to produce a continuous potential well. This well corresponds to the region of maximum gravitational time dilation, coinciding with the maximum gravitational force

$$g = \frac{GMm}{R_{\text{surface}}^2} \tag{20}$$

The introduction of this rounded potential well, though initially prompted by the conceptual suggestion of a "gravitational potential minimum," proves physically valuable: it captures the smooth transition between interior and exterior gravitational regimes and defines the location where time dilation reaches its greatest value. At the bottom of the potential well, corresponding to $R = R_{\rm surface}$, the potential V reaches its maximum negativity, while the gravitational force attains its maximum positive magnitude. This relationship follows directly from the conservation of mechanical energy,

$$E_{total} = KE + V = 0 (21)$$

which holds at all times when expressed relative to the reference point at infinity $(V(\infty) = 0)$. Consequently, a more negative potential energy corresponds to a greater positive kinetic energy:

$$V \downarrow \Rightarrow KE \downarrow$$
 (22)

To minimize the potential energy, V must therefore be made as **negative** as possible, which in turn maximizes the kinetic energy,

$$Force \times distance = \Delta KE$$
 (23)

At the location of the potential minimum, $R = R_{\text{surface}}$, the gravitational force achieves its maximum value, while the derivative of the potential vanishes:

$$\frac{dV}{dR} = 0$$
 at $R = R_{\text{surface}}$ (24)

Hence, the surface represents the bottom of the potential well, where

$$F_{\text{grav}} = max, V = min \tag{25}$$

Beyond the surface $(R > R_{\text{surface}})$, concerns about the sign of dV/dR are resolved by invoking the extremization principle of the four-vector $(J \cdot E, E \times B)$, which ensures that the magnitude of the force remains positive and correctly oriented regardless of the potential's local slope. This approach guarantees a continuous, physically consistent description of the gravitational field across the entire domain.

Having now established a rigorous expression for the Earth's gravitational potential V(R), we turn to the interpretation of its implications.

A particularly striking outcome of the analysis is that the maximum gravitational time dilation occurs precisely where the potential V(R) attains its minimum, while a minimum in gravitational time dilation corresponds to the maximum of V(R). This inverse relationship arises naturally from the interplay between potential energy, kinetic energy, and spacetime curvature. We therefore proceed to examine the minimization scenario, analyzing how the curvature of the potential well and its depth govern the magnitude of gravitational time dilation, and how this mechanism connects directly to the observed thermal and dynamic characteristics of planetary bodies such as Venus.

GRAVITATIONAL, VELOCITY, AND ENTROPIC RELATIONSHIPS

Minimizing the gravitational potential V, that is, making it as negative as possible, leads to a corresponding increase in gravitational time dilation. This effect, in turn, results in a greater velocity time dilation, since both are equivalent manifestations of spacetime curvature. In other words, when the potential energy decreases (becomes more negative), clocks experience a slower passage of time in a stronger gravitational field. The same degree of time dilation would occur if a stationary clock were instead placed in orbit at the same radius R with an equivalent velocity v. Thus, minimizing V directly corresponds to maximizing both gravitational and velocity-based time dilation effects.

This connection naturally extends into thermodynamics, where the minimization of energy corresponds to the maximization of entropy. To approach thermodynamic equilibrium, the relationship is given by

Minimize
$$E \equiv V \iff \text{Maximize S}$$
 (29)

Therefore, to maximize entropy, one must also maximize the speed v, since increasing v enhances the velocity time dilation and thus the energy dispersion within the system. Suppose we have a confined gas: if the average molecular speed v is increased, the potential for entropy creation is also increased. When the container walls are removed and the gas expands freely, its molecules travel in random directions ($v \approx v_{\rm avg}$) through the aether. These molecules experience an **aether force**, $F_{\rm aether}$, and we can expect:

Rate of entropy creation =
$$F_{\text{aether}} \times v$$
 (30)

Both F_{aether} and v increase together, though not necessarily at the same rate. This aether force is required for a molecule to

continue propagating through the aether, consistent with Newton's first law. Hence, entropy is generated naturally in an expanding gas, in agreement with Boltzmann's kinetic theory of gases. Once the container walls are removed, disorder increases spontaneously. The faster the molecules move, the greater the rate of entropy increase with time.

HEAT ENTROPY AND NON-HEAT ENTROPY

A question may arise whether $F_{\text{aether}} \times v$ describes energy generation rather than entropy generation. For example, when a block slides over a resistive surface, the rate of heat generation is given by Fv, where F is the resistive force. In an electrical circuit, the power dissipation is $J \cdot E$, which also represents $Force(E) \times velocity(I)$.

In the author's doctoral research, a clear distinction was made between heat dissipation and non-heat dissipation of energy, particularly in the study of electromagnetic flux tubes (for instance, those related to solar flares). By analogy, entropy S can be viewed under a similar dual categorization. The heat entropy may be described by the standard thermodynamic relation:

$$dS = \frac{dQ}{T} \tag{31}$$

where dQ is the amount of heat transferred and T is the absolute temperature. Increasing the molecular velocity v raises the rate of heat transfer Q, and consequently increases the rate of entropy generation. Here, we are concerned with the rate at which heat entropy is added to a confined gas as v increases.

We may also associate the generation of non-heat entropy with the expansion of a gas once its confining walls are removed. At that point, molecular speed v no longer increases only entropy does. Since increasing temperature T corresponds to increasing molecular velocity v, heating a confined gas increases its disorder. At absolute zero (KT = 0K), molecular velocity v = 0. Therefore, the greater the heat entropy added to a confined gas, the greater the non-heat entropy generated when the gas expands freely afterward.

This suggests a kind of entropy conservation, where heat entropy and non-heat entropy transform analogously to mass—energy conservation:

$$E = mc^2 (32)$$

Just as mass may be converted into energy, heat entropy can be transformed into non-heat entropy:

$$S_{\text{heat}} \longrightarrow S_{\text{non-heat}}$$
 (33)

analogous to the transformation $m \rightarrow E$.

THERMODYNAMIC EXPANSION AND ENTROPY CONVERSION

Let us now revisit the energy minimization and maximization process illustrated in Figure 5 and relate it to thermodynamic principles. Minimizing the potential *V* maximizes the gravitational time dilation and velocity time dilation

(increasing v), while minimizing the total energy E maximizes the entropy S:

Minimize $V \Rightarrow$

maximize gravitational time and velocity time dilation, Minimize energy $E \Rightarrow$ maximize entropy S

(34)

Hence, maximizing entropy implies maximizing molecular velocity. For a confined gas, increasing the average molecular speed enhances the potential for entropy creation. Once the container walls are removed, the rate of entropy generation becomes

$$\frac{dS}{dt} = Fv \tag{35}$$

where F is the aether force maintaining molecular motion through the aether. The conservation of this force is another statement of Newton's first law molecules continue in uniform motion at constant v. This motion generates entropy naturally as the gas expands indefinitely. Once more, one may ask whether Fv describes energy rather than entropy generation. As in prior solar flare studies, we can substitute "energy" with "entropy," distinguishing between heat and non-heat dissipation. The heat entropy remains governed by

$$dS = \frac{dQ}{T} \tag{36}$$

while non-heat entropy arises during gas expansion, where volume and disorder increase a phenomenon first described by Boltzmann. Thus, we recognize three distinct forms of entropy generation:

- 1. Heat entropy,
- 2. Non-heat entropy (free expansion), and
- 3. Entropy related to increased molecular degrees of freedom (not treated here, as this study concerns physical rather than chemical effects).

Increasing molecular velocity v increases the rate of heat and entropy transport alike. In a non-heat process (such as free expansion), higher molecular speed means faster gas expansion and greater entropy production. Therefore, the more heat entropy initially imparted to a confined gas, the more non-heat entropy will be produced after expansion.

This is a two-step process: (1) adding heat to generate heat entropy, and (2) converting this into non-heat entropy during expansion.

SPHERICAL EXPANSION MODEL

Now consider a spherically confined gas expanding isotropically from the origin. The rate of non-heat entropy generation from heat entropy can be written as

$$\frac{dS_{\text{non-heat}}}{dt} = Fv = P SA v \tag{37}$$

where P is the gas pressure and SASASA is the spherical surface area.

Using the ideal gas law $P = \frac{nRT}{V}$ and substituting $\frac{4}{3}\pi R^3$, we obtain

$$\frac{dS_{\text{non-heat}}}{dt} = \frac{nRT}{V} \times 4\pi R^2 \times v = \frac{3nRTv}{R}$$
 (38)

As $R \to \infty$, then

$$\frac{dS_{\text{non-heat}}}{dt} \to 0 \tag{39}$$

Thus, increasing temperature T (or equivalently velocity v) enhances the heat entropy S_{heat} , which in turn increases the rate of non-heat entropy generation as the gas expands. With time $(t \to \infty)$ and radius $(R \to \infty)$, the heat entropy is completely converted into non-heat entropy, paralleling the full conversion of mass into energy in radiative systems.

Following Einstein's relation,

$$E = mc^2 (40)$$

when a radiating body emits energy E, it loses a mass $m = E/c^2$. Similarly, as the gas expands, heat entropy transforms into non-heat entropy representing a complete transition from "massive" (confined) to "massless" (radiative) states. Equation (38) thus describes a hyperbolic decay process, continuing until the entire radiating body has been converted into a radiation-like state analogous to the transformation of all massive matter into photons under total radiative emission.

BRIDGING NEWTON AND EINSTEIN

It is well established that the gravitational time dilation of a stationary clock is equivalent to the special relativistic time dilation of a clock moving in orbit at that same location. However, Einstein does not explicitly distinguish between stationary and moving clocks. While his formulation certainly applies to stationary clocks, he does not appear to have realized that if the clock is allowed to move, General Relativity (GR) implicitly incorporates the time dilation of Special Relativity (SR). In doing so, GR effectively introduces SR into its own framework

The issue is that Einstein developed GR as an extension of SR through the concept of space—time curvature, but did not reciprocally apply GR's insight back to SR that is, he did not fully explore the interplay between stationary and moving clocks within a single consistent framework.

So, where did Einstein go wrong? His theory works perfectly for a stationary clock, but what about a clock in orbit a clock in free fall?

Einstein assumes that a freely falling clock moves according to space—time curvature. In reality, the clock moves according to Newtonian gravitational force. This is because (1) the clock is massive, ruling out photon-like motion governed purely by curvature, and (2) it is composed of nuclear matter, ruling out purely geometric behavior of non-nuclear fermions.

It is known that Special Relativity, General Relativity, and the so-called "Ultimate Theory of Relativity" (Farmer–Musakhail) are closely interlinked [2]. Simply stated, the condition that a clock must be stationary to exhibit gravitational time dilation is analogous to the requirement that

twin 1 remains stationary in the twin paradox in order to resolve it.

This insight is crucial. Some individuals have claimed that SR and gravitational time dilation occur independently and simultaneously. One correspondent even asserted that both effects can be treated separately for orbiting clocks. Yet, when one searches the literature for "simultaneous occurrence of special relativistic and gravitational time dilation," there is no empirical data confirming that the two effects are observed independently for orbital clocks. Typical explanations merely state that "they can occur simultaneously, but each belongs to a different theory, and the total time dilation is given by the product of the two."

Different theories? The gravitational time dilation itself explicitly refers to a clock in orbit, at the same radial distance R, where the time dilation of a stationary clock is defined! Another interlocutor insisted that, for satellites, the SR time dilation is small compared with the gravitational time dilation and can therefore be ignored implying the two are simply added. Yet another claimed that they should be multiplied. If that were true, negligible SR time dilation multiplied by a significant gravitational time dilation would yield a negligible total clearly inconsistent. Are such interpretations being improvised merely to evade conceptual inconsistencies?

In summary, in the twin paradox, setting ($v_{\rm twin~1}=0$) to resolve the paradox introduces acceleration, which connects SR to the Ultimate Relativity and hence to GR. Similarly, in a gravitational field, a body (or clock) in orbit exhibits time dilation due to its velocity. When we impose $v_{\rm clock}=0$, we transition into the general relativistic description. Thus, the transformation from velocity-based time dilation to gravitational time dilation mirrors the logic used in resolving the twin paradox.

In one of my discussions, I argued that gravity vanishes at the center of the Earth, and therefore a stationary clock there should experience no time dilation. My opponent responded that the clock is still at the bottom of a gravitational potential well and therefore its time dilation is *maximized*. He claimed that even if all gravitational forces cancel out, the potential still remains.

I disagreed, stating that gravitational time dilation arises from the stationary clock being compressed by its own weight the gravitational force acting downward and the normal reaction force from the mantle acting upward. He countered that these are equal and opposite forces that simply cancel. But this is not correct. In this case, both forces are gravitational in origin, not opposite in nature. It makes no sense to claim that the force vanishes while simultaneously asserting that the clock resides at the bottom of a potential well.

On the other hand, for a clock stationary at the surface of the Earth, the net force is indeed zero but, in this case, the two opposing vectors are gravitational and electromagnetic. Because these two forces are of fundamentally different kinds, their balance represents an electro-gravitational unification, consistent with General Relativity. Thus, Einstein's space—time framework is recovered as the appropriate description at this boundary, which may itself be incorporated into an even broader framework an Ultimate Reality [2].

Consider again the terrestrial gravitational potential illustrated earlier (Figure 5). The potential decreases hyperbolically according to V = k/R from $R = \infty$ toward $R = R_{\oplus}$. Near the

surface, however, there is an *abrupt* change, which must be made differentiable a smooth transition.

The only way to achieve this is if General Relativity becomes dominant near R_{\oplus} , rounding off the curve as one approach the surface from above. This is analogous to the behavior of relativity near v=c, where General Relativity "rounds off" the divergence as $v \to c$ from above [1]. The same smoothing process also occurs from below as one approach $R=R_{\oplus}$ from beneath the surface.

We may interpret this dual rounding-off, from above and below $R=R_{\oplus}$, as a transition similar to that found in functions like $\ln R$ or the gravitational force $F_g(R)$, both of which are non-differentiable at the origin. The role of General Relativity is therefore to smooth the gravitational potential in the vicinity of the planetary surface, rendering it continuous and differentiable.

General Relativity accounts for processes involving massive fermions with velocities $v \le c$.

In this context, $v \to 0$ does not imply a divergent term $(m\lambda \to \infty)$. Thus, GR not only provides the rounding-off near the bottom of the potential well but also ensures the entire turnaround converting two asymptotic branches on either side of $R = R_{\oplus}$ into a smooth, continuous potential well with its vertex precisely at the surface.

Starting from the premise that we aim for a smooth space—time geometry synonymous with the use of General Relativity we may then choose to transition between space—time curvature and Newtonian force as appropriate.

This depends on whether we are describing a nuclear or nonnuclear fermionic system (massive electrons/positrons or photons) at a given field point. The transition can be applied either partially or fully.

In earlier discussions, we adopted the full transition, equating space—time curvature directly with Newtonian gravitational force. Returning to gravity itself, we have been largely unconcerned with the nature of the simple harmonic potential through the Earth's interior, except for its deviation near the surface. The question arises: what if this deviation represents the emergence of an anharmonic oscillator, similar to those found in molecular chemistry?

Figure 6. Comparison between the simple harmonic oscillator and the anharmonic oscillator in chemistry.

For the anharmonic oscillator, at high separations between two atoms in a molecule, the potential levels off and transitions into the energy continuum at large distances.

One may imagine that stretching a molecular bond too far eventually separates the atoms, extinguishing the electromagnetic force that bound them. Prior to dissociation, both the gravitational and chemical systems can be described by the same functional form: $V = (1/2)kx^2$ and F = -kx. As we move outward from the Earth's center, the pressure of overlying rock decreases from extremely high values to zero at the surface and vanishes entirely beyond it. This is analogous to stretching a chemical bond beyond its electromagnetic limits, at which point the bond energy levels merge into a continuum and the molecule dissociates into free atoms. In chemistry, this represents the loss of quantization.

Likewise, the electromagnetic force prevents the Earth from collapsing under its own weight and sustains stars against gravitational contraction while nuclear fuel remains unexhausted.

The repulsion between surface electrons of adjacent rocks resists compression, stabilizing the planet.

It is precisely this interplay between gravitational and electromagnetic forces that causes the rounding off of the simple harmonic potential into an anharmonic potential near the surface of a planet or star. This mechanism explains how the electromagnetic contribution to gravitating systems naturally produces the smooth, differentiable behavior required by both General Relativity and observable physical continuity.

Force Cancellation

As mentioned earlier, if forces of the same kind add up to zero, the result is physically trivial there is simply no net force, and the situation is complete.

For example, consider the gravitational potential inside the Earth. At the center, all gravitational forces cancel out, leaving a total force of zero. Consequently, there is no gravitational time dilation at that location, since the clock experiences no pressure or deformation from gravity.

It is true that the rock pressure at the center of the Earth is extremely high indeed, maximal but if we hypothetically ignore that (which, in reality, we cannot), the clock at the center would tick at the same rate as one in deep intergalactic space, far from any gravitating mass and effectively stationary. However, when different types of forces cancel one another, the situation is no longer trivial.

In such cases, we encounter force unification one fundamental interaction is equated with another. A prime example of this is General Relativity, which unifies the electromagnetic and gravitational forces by setting them equal in physical effect.

In this sense, the space—time curvature associated with Lorentz contraction and time dilation in Special Relativity (arising from electromagnetic interactions) becomes equivalent to the Newtonian gravitational force. From an observational standpoint, it is often impossible to distinguish between these two descriptions.

For instance, Einstein believed he was describing the space—time curvature responsible for the precession of Mercury's orbit; in truth, the underlying dynamics can be equivalently interpreted in terms of Newtonian gravitational force. Nevertheless, Einstein was correct in applying the space—time curvature concept to the deflection of light by the Sun, as confirmed by the Eddington experiment. Thus, when an object is stationary in a gravitational field, we can interpret the condition as:

$$F_{\text{electromagnetic}} = F_{\text{gravitational}}$$
 (41)

representing a unified balance of forces. This equality signifies a physical unification a fundamental equivalence between electromagnetism and gravity. Introducing this process naturally leads to the transition:

(Simple harmonic potential) \rightarrow (Anharmonic potential)

This transition describes how the gravitational potential becomes rounded off at the boundary between the planet's interior and exterior from the simple harmonic potential (dominant internally, neglecting electrostatic effects) to the hyperbolic potential outside the planet.

At the surface $R = R_{\rm surface}$, this smoothing ensures a continuous and differentiable potential, avoiding any abrupt or "pointed" discontinuity. Physically, this means that nothing dramatic occurs to the net forces as one pass through the surface boundary; instead, the transition is smooth, representing the continuous interplay of gravitational and electromagnetic effects.

CONCLUSION

Final Words on Gravitational Time Dilation

In the twin paradox, twin 2 experiences acceleration and that sensation is the only way to resolve the paradox. In the gravitational case, under General Relativity (GR), an accelerating body does *not* feel its acceleration. This occurs only because an identical acceleration acts on every atom within the body. Nevertheless, this explanation leaves some unease.

Our aim has been to incorporate Einstein's General Relativity into the broader framework of "Ultimate Relativity" (Farmer–Musakhail). There exists a deep correspondence between acceleration, gravity, and the electromagnetic force observed in the twin paradox. Even though in a gravitational field one cannot feel acceleration, whereas in the twin paradox the key feature is that twin 2 *feels* it, both cases describe the same physical phenomenon from different frames of reference. A stationary clock under the influence of gravity experiences the same time dilation as a clock moving in orbit at that same radius *R*.

Thus, gravitational time dilation is *identical* to the time dilation due to acceleration in free fall the same mechanism that appears in the twin paradox even though, in free fall, we do not feel the gravitational force directly.

Gravitational time dilation was introduced precisely to address the question of why twin 2 could feel acceleration in the paradox, and yet gravity appears equivalent in effect despite being imperceptible.

Einstein's interpretation, however, is incomplete. He describes the Newtonian gravitational force of planetary orbits as the result of space—time curvature, when in fact it remains a Newtonian force. Similarly, he attributes gravitational time dilation to curvature, when it is physically a result of force.

A stationary clock in a gravitational field is compressed between two opposing influences gravitational and electromagnetic forces. Although the net force is zero, this is not a trivial cancellation. It represents a force unification, one that introduces new physics, just as earlier in this paper we converted the simple harmonic oscillator into an anharmonic oscillator by analogy with chemistry.

The gravitational time dilation observed for a stationary clock is identical to the orbital time dilation of a moving one. The relevant velocity is the orbital velocity, not the escape velocity (though they are often conflated in GR formulations).

This time dilation is likewise equivalent to the accelerationinduced time dilation in the twin paradox even though, in the gravitational case, the acceleration is not felt.

Hence, we confirm the validity of the Ultimate Relativity framework, proposed as a unified description encompassing Einsteinian Relativity and Farmer–Musakhail Aether Dynamics. In this context, a stationary clock in a gravitational field represents the condition

$$F_{\text{electromagnetic}} = F_{\text{gravitational}}$$
 (41)

signifying force unification and the emergence of new physics specifically, gravitational time dilation. Thus, gravitational time dilation itself constitutes the "new physics" introduced by this unification.

Einstein discovered this effect, yet misidentified its nature: he described it as space-time curvature, when in fact it arises from Newtonian force. Moreover, the stationary clock is not moving so how can space undergo Lorentz contraction without displacement $(v = \Delta x/\Delta t = 0)$?

Gravitational curvature, therefore, is best regarded as an extension of Lorentz contraction and time dilation in Special Relativity. Admittedly, there is no intrinsic reason why time must vary while space remains constant under curvature, yet this observation suggests deeper physical deductions: in gravitational time dilation, the variable is purely temporal, not spatial.

On Force Unification and New Physics

We have long known examples of force unification, beginning with Faraday and Maxwell. In a sense, Maxwell unified the electric and magnetic forces, observing the following equations:

$$\nabla \cdot E = \frac{\rho}{\varepsilon} \tag{42}$$

$$\nabla \times B = \mu J \tag{43}$$

If these two equations are connected if the two forces are indeed facets of a unified phenomenon, then the charge density in equation (42) serves as the source for the current density in equation (43). This implies a deeper relationship grounded in the conservation of electric charge. To enforce this conservation, Maxwell introduced the concept of displacement current, modifying equation (43) to:

$$\nabla \times B = \mu J + \frac{1}{c^2} \frac{\partial E}{\partial t} \tag{44}$$

In this case, the new physics arising from the unification of electric and magnetic forces is electromagnetic radiation. Analogously, we assert that the force propelling the current densities of electric charge J is identical to the force that pulls fermions (with density ρ) from their source where they are initially massive and stationary and removes their rest mass,

accelerating them to v = c. This process occurs just inside the event horizon of a black hole.

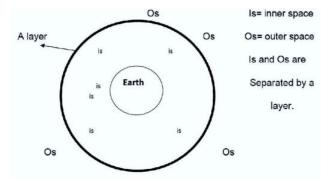
However, neutrinos emitted from the stellar core, some of which combine to form electromagnetic gauge bosons (em GBs) of heat, are not impeded by the event horizon because this process involves no net acceleration; it effectively occurs at v = c. The only circumstance under which an event horizon (where escape velocity = c) can impede radiation is when the radiation originates from accelerated matter just beneath the surface precisely the mechanism by which stars radiate.

Therefore, a black hole emits neither heat nor light. It produces no em GBs because their progenitors the fusion neutrinos no longer emerge from the core once nuclear reactions have ceased.

Without internal nuclear processes, the star collapses into a black hole, releasing neither heat nor radiation.

Plasma itself cannot radiate heat; it is the fusion-driven neutrino interactions that produce thermal emission. Once those processes end, radiation ceases leaving only gravitational mass and curvature without thermodynamic output.

FINAL CONCLUSION


The gravitational time dilation, arising from acceleration v^2/R , is *identical* to the velocity time dilation of Special Relativity, where $v_{\rm escape} = v_{\rm orbit}$. They are physically equivalent because they stem from force unification:

Gravitational time dilation \Leftrightarrow Newtonian force = Special Relativistic time dilation \Leftrightarrow Electromagnetic force.

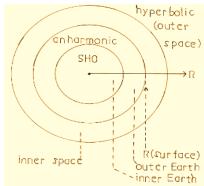
In the twin paradox, for an acceleration a < 1 (i.e., non-instantaneous), both acceleration time dilation and velocity time dilation occur simultaneously but that situation is purely electromagnetic, not unified with gravity.

Gravitational Equilibrium and Black Hole Equilibrium

We have determined that to prevent the Earth from collapsing under its own gravity, there must exist a force unification between gravity and electromagnetism. This electromagnetic counteraction operates in the static terrestrial frame, rotating with the Earth. Outside the planet, however, the gravitational frame is non-rotating. Thus, a velocity discrepancy arises due to the Earth's rotation evidence of underlying aether forces.

Figure 7: Muhammad's gravitational aether analysis, showing the outer sphere $R_{\text{outer}} > R_{\text{surface}}$.

This rotational distinction suggests a gravitationally significant region at the boundary between these two regimes, consistent with the gravitational aether model proposed by *Muhammad Musakhail*.


We now extend this model by proposing the presence of both **inner** and **outer** spheres:

Inner sphere: R < R_{surface}
 Outer sphere: R > R_{surface}

As R increases from the center (R = 0) outward:

- The inner region $(0 < R < R_{inner})$ follows a simple harmonic potential.
- The transition zone $(R_{\text{inner}} < R < R_{\text{surface}})$ exhibits anharmonic behavior.
- The **outer region** $(R_{\text{surface}} < R < R_{\text{outer}})$ transitions from hyperbolic (V = k/R) to a leveled potential well.

This yields the following structure:

Figure 8: Extended model with both inner and outer spheres illustrating the electro-gravitational aether regions.

Heisenberg Relation and Angular Behavior

In chemistry, a bond dissociates when its vibrational amplitude exceeds the binding potential, transforming the simple harmonic potential into an anharmonic one. This transformation can be expressed as a change in angular momentum:

 Δl : $\pm 1 \rightarrow \infty$. Applying the **Heisenberg uncertainty principle** to angular motion:

$$\Delta\theta \,\Delta l \sim \frac{\hbar}{2} \tag{45}$$

Hence, as angular momentum variation Δl increases, the angular uncertainty $\Delta \theta$ decreases:

$$\Delta\theta$$
: large $\rightarrow 0$ (46)

This behavior corresponds to the hyperbolic potential V = k/R flattening near the surface $(R \to R_{\text{surface}})$, ensuring smooth continuity between inner and outer potentials.

Centripetal Acceleration and Surface Transition

The centripetal acceleration due to Earth's rotation is:

$$A_c = \frac{v^2}{R} \tag{47}$$

Although the Earth's surface rotation speed seems small, the potential well is extremely deep; thus, even modest v produces significant A_c . This explains the physical relevance of Earth's rotation to gravitational equilibrium and entropy generation.

Velocity Field Across the Boundary

Near $R = R_{\text{surface}}$, the internal rotating aether and external static aether overlap:

$$v_{\text{fall}} = \int \frac{GM}{R^2} dt \tag{48}$$

where only the internal mass ($M_{\rm inside}$) contributes due to the inverse-square law. This integral defines the velocity of free fall across the gravitational field, connecting seamlessly with the potential well rounding process.

Thermodynamic Equivalence

At the boundary between rotating and stationary aether, energy dissipation occurs through the familiar expression:

$$P = F_{\text{aether}} v. (49)$$

Introducing thermodynamic correspondence:

$$S + H = \text{constant}, \ dS = -dH$$
 (50)

where *S* is entropy and *H* is enthalpy (heat). Thus, forcevelocity interactions correspond to simultaneous energyentropy transformations:

$$\frac{dS}{dt} = F_{\text{aether}} v = -\frac{dH}{dt}$$
 (51)

These relationships imply conservation of entropy-energy, analogous to energy-mass equivalence in relativity ($E = mc^2$).

Reverse Higgs Process and Force Unification

The Reverse Higgs process describes acceleration from rest $(v: 0 \rightarrow c)$ under constant total mass m_e :

$$a = \frac{F}{m}, \ m = \text{constant}$$
 (52)

This restores a Newtonian form of acceleration, consistent with constant mass mechanics. Gravitational and electromagnetic potentials thus become interchangeable:

$$V_{\text{grav}} \equiv m_0 c^2 \tag{53}$$

Inside $R = R_{\text{surface}}$, the equilibrium condition remains:

$$F_{\text{grav}} = -F_{\text{em}} \Rightarrow F_{\text{total}} = \text{constant.}$$
 (54)

Black Hole Equilibrium and Matter-Antimatter Balance

When a star exhausts its nuclear fuel and collapses into a black hole, aether pressure inside rises until matter—antimatter parity is reached:

$$F_{\text{matter}} = -F_{\text{antimatter}} \tag{55}$$

yielding gravitational equilibrium. Within the event horizon, both gravity and electromagnetic forces vanish. Radiation ceases because plasma cannot radiate heat neutrinos from fusion are absent. Thus, a black hole represents a static equilibrium state, not a singularity.

Entropy, Enthalpy, and Shrinkage Dynamics

As a star collapses:

$$\frac{dS}{dt} = F v = -\frac{dH}{dt} \tag{56}$$

and

$$\Delta S = \int \frac{dH}{T} \tag{57}$$

During the shrinkage $R: R_{\text{surface}} \rightarrow R_{\text{event horizon}}$:

- Temperature increases $(T_{min} \rightarrow T_{max})$
- Entropy decreases, signifying increasing order.
- Energy (enthalpy) converts into gravitational binding.

From the exterior, the black hole appears hot, yet internally, equilibrium is maintained through electro-gravitational cancellation.

Bohr Space-Time Curvature Condition

For an observer *inside* a black hole, equilibrium arises from space–time curvature ($v_{\text{aether}} \propto R$). For an observer *outside*, prior to collapse, equilibrium is interpreted as Newtonian force unification, $F_{\text{grav}} = -F_{\text{em}}$.

Figure 9: Bohr's space—time curvature condition for quantum number n, the number of waves per orbit, $v_{\text{aether}} \propto R$, representing curvature equilibrium.

Therefore, no singularity exists within a black hole or at the beginning of the universe. When equal matter and antimatter coexist, total gravitational attraction cancels ensuring stability and finite structure. The event horizon marks not destruction but equilibrium between the two fundamental forces.

CRUCIAL FINAL CONCLUSION

To an external observer, as a star collapses, the aether pressure inside rises dramatically, initiating a matter → antimatter transformation. Simultaneously, the temperature of the stellar plasma appears to increase enormously. However, we do not experience this heat, because a black hole cannot emit electromagnetic gauge bosons of heat the neutrinos from the stellar core have ceased once nuclear fusion stops. From the viewpoint of an astronaut within the plasma, enclosed in a high-protection space suit, nothing seems to change. The surrounding plasma retains the same temperature as before the collapse. Thus, what the external observer interprets as an immense temperature increase is merely a relativistic perspective effect an extension of Special Relativity. Just as in the twin paradox, where twin 1 perceives twin 2 as "flattened" by motion, twin 2 himself experiences no such change in his own frame. Similarly, the astronaut's local frame remains physically unchanged despite external appearances.

Final Comment: Imaginary Numbers in Electromagnetism and Gravitation

Consider again **Figure 5** (the gravitational potential diagram). It is satisfactory in form, except for one subtlety: the **simple** harmonic potential is inverted its vertex lies correctly at the origin, but its two limbs extend downward (negative *y*-direction). To reconcile this, we re-introduce the gravitation of matter versus antimatter, as previously discussed. In gravitation:

- Like attracts like and repels unlike;
- whereas in electromagnetism:
- Like repels like and attracts unlike.

Thus, the same mathematical structure must accommodate opposite physical behaviors.

Complex Representation of Electromagnetic and Gravitational States

A simple harmonic oscillator (SHO) yields a sinusoidal form. In electromagnetism and now extended to gravitation the sinusoidal function arises naturally as the complex exponential

Solution of Maxwell's wave equation:

Here in this equation, we have

$$e^{j\theta} = \cos\theta + j\sin\theta \tag{58}$$

where the two components can be associated respectively with antimatter and matter states:

$$e^{j\theta} = \begin{cases} \text{Re}[\cos \theta] & \Rightarrow \text{ anti-matter (real)} \\ \text{Im}[j \sin \theta] & \Rightarrow \text{ matter (Imaginary)} \end{cases}$$

Thus, we may interpret:

$$e^{j\theta} = (anti-matter) + j \times (matter)$$

By direct analogy, the gravitational wave function follows the same structure:

$$e^{j\theta} = (\cos \theta + j \sin \theta) \begin{cases} \text{anti-matter (real)} \\ \text{matter (Imaginary)} \end{cases}$$
 (59)

Potential Energy and Sign Convention

The gravitational potential energy between two masses is given by:

$$V = \text{Force} \times \text{distance} = \int \frac{Gm_1m_2}{R^2} dR$$
 (60)

For the potential V to be negative, as shown in Figure 5, we require $(m_1m_2 < 0)$. This condition implies that at least one of the masses must be imaginary, which fits our proposed interpretation: matter behaves as imaginary, and antimatter as real.

Hence, in both gravitational and electromagnetic contexts, assigning mmm (or charge e) as complex ensures that their product yields the necessary negative potential. The exponential form $e^{j\theta}$ naturally satisfies this mathematical condition.

REFERENCES

[1] Musakhail, M. A., & Farmer, J. R. (2025). Revising Electrodynamics: New Perspectives on Molecular Bonding in Chemistry. *Hyperscience International Journal*, *5*(2), 41–50. https://doi.org/10.55672/hij2025pp41-50

Electromagnetic Analogy and Particle Propagation

When a fermion propagates upon a dual Maxwellian photon, one may ask:

Does the e^+ propagate on the electric component E, or on the magnetic component B?

Following our complex representation above, we conclude:

$$\{e^{-} \quad (imaginary) \text{ propagates on } B \text{ (imaginary)} \\ e^{+} \quad (real) \text{ propagates on } E \text{ (real)}$$

(61)

Both E and E thus serve as propagation vectors for fermions, each aligned with the direction of wave travel. Consequently, an electron moving along a E-oscillation is d escribed by an imaginary propagation vector, while a positron moving along an E-oscillation is described by a real vector. A significant case arises for axial propagation vectors (E, E) inside electromagnetic circuits, where such fermions act as weak-strong gauge bosons, linking the electromagnetic and gravitational frameworks.

[2] Musakhail, M. A., & Farmer, J. R. (2024). On the Aether Dynamics, Twin Paradox, and Ultimate Relativity of Solar Flares. *Hyperscience International Journal*, 4(3), 37–57. https://doi.org/10.55672/hij2024pp37-57